Skip to content
Snippets Groups Projects
  1. Nov 27, 2016
  2. Nov 26, 2016
  3. Nov 24, 2016
  4. Nov 23, 2016
  5. Nov 22, 2016
  6. Nov 20, 2016
  7. Nov 10, 2016
  8. Nov 03, 2016
    • Robbert Krebbers's avatar
      Use symbol ∗ for separating conjunction. · cc31476d
      Robbert Krebbers authored
      The old choice for ★ was a arbitrary: the precedence of the ASCII asterisk *
      was fixed at a wrong level in Coq, so we had to pick another symbol. The ★ was
      a random choice from a unicode chart.
      
      The new symbol ∗ (as proposed by David Swasey) corresponds better to
      conventional practise and matches the symbol we use on paper.
      cc31476d
  9. Oct 27, 2016
  10. Oct 26, 2016
  11. Oct 25, 2016
  12. Oct 13, 2016
  13. Oct 05, 2016
  14. Sep 27, 2016
  15. Sep 20, 2016
  16. Sep 19, 2016
  17. Sep 09, 2016
    • Robbert Krebbers's avatar
    • Robbert Krebbers's avatar
    • Robbert Krebbers's avatar
      Support for specialization of P₁ -★ .. -★ Pₙ -★ Q where Q is persistent. · 090aaea3
      Robbert Krebbers authored
      Before this commit, given "HP" : P and "H" : P -★ Q with Q persistent, one
      could write:
      
        iSpecialize ("H" with "#HP")
      
      to eliminate the wand in "H" while keeping the resource "HP". The lemma:
      
        own_valid : own γ x ⊢ ✓ x
      
      was the prototypical example where this pattern (using the #) was used.
      
      However, the pattern was too limited. For example, given "H" : P₁ -★ P₂ -★ Q",
      one could not write iSpecialize ("H" with "#HP₁") because P₂ -★ Q is not
      persistent, even when Q is.
      
      So, instead, this commit introduces the following tactic:
      
        iSpecialize pm_trm as #
      
      which allows one to eliminate implications and wands while being able to use
      all hypotheses to prove the premises, as well as being able to use all
      hypotheses to prove the resulting goal.
      
      In the case of iDestruct, we now check whether all branches of the introduction
      pattern start with an `#` (moving the hypothesis to the persistent context) or
      `%` (moving the hypothesis to the pure Coq context). If this is the case, we
      allow one to use all hypotheses for proving the premises, as well as for proving
      the resulting goal.
      090aaea3
  18. Sep 05, 2016
Loading