Skip to content
Snippets Groups Projects
  1. Nov 24, 2016
  2. Nov 22, 2016
    • Robbert Krebbers's avatar
      Make nclose an explicit coercion. · 274209c2
      Robbert Krebbers authored and Ralf Jung's avatar Ralf Jung committed
      We do this by introducing a type class UpClose with notation ↑.
      
      The reason for this change is as follows: since `nclose : namespace
      → coPset` is declared as a coercion, the notation `nclose N ⊆ E` was
      pretty printed as `N ⊆ E`. However, `N ⊆ E` could not be typechecked
      because type checking goes from left to right, and as such would look
      for an instance `SubsetEq namespace`, which causes the right hand side
      to be ill-typed.
      274209c2
    • Ralf Jung's avatar
      new notation for pure assertions · 99cbb525
      Ralf Jung authored
      99cbb525
    • Ralf Jung's avatar
      use OFEs instead of COFEs everywhere · 75518c9a
      Ralf Jung authored
      Use COFEs only for the recursive domain equation solver
      75518c9a
  3. Nov 09, 2016
  4. Nov 03, 2016
  5. Nov 01, 2016
  6. Oct 31, 2016
  7. Oct 28, 2016
  8. Oct 27, 2016
  9. Oct 25, 2016
  10. Oct 13, 2016
  11. Oct 12, 2016
  12. Oct 06, 2016
  13. Oct 05, 2016
  14. Sep 27, 2016
  15. Sep 19, 2016
  16. Sep 09, 2016
    • Robbert Krebbers's avatar
      Support for specialization of P₁ -★ .. -★ Pₙ -★ Q where Q is persistent. · 090aaea3
      Robbert Krebbers authored
      Before this commit, given "HP" : P and "H" : P -★ Q with Q persistent, one
      could write:
      
        iSpecialize ("H" with "#HP")
      
      to eliminate the wand in "H" while keeping the resource "HP". The lemma:
      
        own_valid : own γ x ⊢ ✓ x
      
      was the prototypical example where this pattern (using the #) was used.
      
      However, the pattern was too limited. For example, given "H" : P₁ -★ P₂ -★ Q",
      one could not write iSpecialize ("H" with "#HP₁") because P₂ -★ Q is not
      persistent, even when Q is.
      
      So, instead, this commit introduces the following tactic:
      
        iSpecialize pm_trm as #
      
      which allows one to eliminate implications and wands while being able to use
      all hypotheses to prove the premises, as well as being able to use all
      hypotheses to prove the resulting goal.
      
      In the case of iDestruct, we now check whether all branches of the introduction
      pattern start with an `#` (moving the hypothesis to the persistent context) or
      `%` (moving the hypothesis to the pure Coq context). If this is the case, we
      allow one to use all hypotheses for proving the premises, as well as for proving
      the resulting goal.
      090aaea3
  17. Aug 27, 2016
  18. Aug 26, 2016
  19. Aug 25, 2016
  20. Aug 24, 2016
  21. Aug 23, 2016
  22. Aug 22, 2016
    • Robbert Krebbers's avatar
      Generalize equality of heap_lang so it works on any value. · 8111cab0
      Robbert Krebbers authored
      This is more consistent with CAS, which also can be used on any value.
      Note that being able to (atomically) test for equality of any value and
      being able to CAS on any value is not realistic. See the discussion at
      https://gitlab.mpi-sws.org/FP/iris-coq/issues/26, and in particular JH
      Jourdan's observation:
      
        I think indeed for heap_lang this is just too complicated.
      
        Anyway, the role of heap_lang is not to model any actual
        programming language, but rather to show that we can do proofs
        about certain programs. The fact that you can write unrealistic
        programs is not a problem, IMHO. The only thing which is important
        is that the program that we write are realistic (i.e., faithfully
        represents the algorithm we want to p
      
      This commit is based on a commit by Zhen Zhang who generalized equality
      to work on any literal (and not just integers).
      8111cab0
  23. Aug 19, 2016
  24. Aug 09, 2016
Loading