Newer
Older
Require Import workload Vbase job task schedule task_arrival response_time
schedulability util_divround util_lemmas
ssreflect ssrbool eqtype ssrnat seq div fintype bigop path.
Module WorkloadBound.
Import Job SporadicTaskset ScheduleOfSporadicTask SporadicTaskArrival ResponseTime Schedulability Workload.
Section WorkloadBoundDef.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task -> nat.
Variable task_period: sporadic_task -> nat.
Variable tsk: sporadic_task.
Variable R_tsk: time. (* Known response-time bound for the task *)
Variable delta: time. (* Length of the interval *)
(* Bound on the number of jobs that execute completely in the interval *)
Definition max_jobs :=
div_floor (delta + R_tsk - task_cost tsk) (task_period tsk).
(* Bertogna and Cirinei's bound on the workload of a task in an interval of length delta *)
Definition W :=
let e_k := (task_cost tsk) in
let p_k := (task_period tsk) in
minn e_k (delta + R_tsk - e_k - max_jobs * p_k) + max_jobs * e_k.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Section BasicLemmas.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task -> nat.
Variable task_period: sporadic_task -> nat.
(* Let tsk be any task...*)
Variable tsk: sporadic_task.
(* ...with period > 0. *)
Hypothesis H_period_positive: task_period tsk > 0.
(* Let R1 <= R2 be two response-time bounds that
are larger than the cost of the tsk. *)
Variable R1 R2: time.
Hypothesis H_R_lower_bound: R1 >= task_cost tsk.
Hypothesis H_R1_le_R2: R1 <= R2.
Let workload_bound := W task_cost task_period tsk.
(* Then, Bertogna and Cirinei's workload bound is monotonically increasing. *)
Lemma W_monotonic :
forall t1 t2,
t1 <= t2 ->
workload_bound R1 t1 <= workload_bound R2 t2.
Proof.
intros t1 t2 LEt.
unfold workload_bound, W, max_jobs, div_floor; rewrite 2!subndiv_eq_mod.
set e := task_cost tsk; set p := task_period tsk.
set x1 := t1 + R1.
set x2 := t2 + R2.
set delta := x2 - x1.
rewrite -[x2](addKn x1) -addnBA; fold delta;
last by apply leq_add.
induction delta; first by rewrite addn0 leqnn.
{
apply (leq_trans IHdelta).
(* Prove special case for p <= 1. *)
destruct (leqP p 1) as [LTp | GTp].
{
rewrite leq_eqVlt in LTp; move: LTp => /orP LTp; des;
last by rewrite ltnS in LTp; apply (leq_trans H_period_positive) in LTp.
{
move: LTp => /eqP LTp; rewrite LTp 2!modn1 2!divn1.
rewrite leq_add2l leq_mul2r; apply/orP; right.
by rewrite leq_sub2r // leq_add2l.
}
}
(* Harder case: p > 1. *)
{
assert (EQ: (x1 + delta.+1 - e) = (x1 + delta - e).+1).
{
rewrite -[(x1 + delta - e).+1]addn1.
rewrite [_+1]addnC addnBA; last first.
{
apply (leq_trans H_R_lower_bound).
by rewrite -addnA addnC -addnA leq_addr.
}
by rewrite [1 + _]addnC -addnA addn1.
} rewrite -> EQ in *; clear EQ.
have DIV := divSn_cases (x1 + delta - e) p GTp; des.
{
rewrite DIV leq_add2r leq_min; apply/andP; split;
first by rewrite geq_minl.
by apply leq_trans with (n := (x1 + delta - e) %% p);
[by rewrite geq_minr | by rewrite -DIV0 addn1 leqnSn].
}
{
rewrite -[minn e _]add0n -addnA; apply leq_add; first by ins.
rewrite -DIV mulnDl mul1n [_ + e]addnC.
by apply leq_add; [by rewrite geq_minl | by ins].
}
}
}
Qed.
End BasicLemmas.
Section ProofWorkloadBound.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task -> nat.
Variable task_period: sporadic_task -> nat.
Variable task_deadline: sporadic_task -> nat.
Context {Job: eqType}.
Variable job_cost: Job -> nat.
Variable job_task: Job -> sporadic_task.
Variable job_deadline: Job -> nat.
Variable arr_seq: arrival_sequence Job.
(* Assume that all jobs have valid parameters *)
Hypothesis H_jobs_have_valid_parameters :
forall (j: JobIn arr_seq),
valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.
(* Consider any schedule. *)
Context {num_cpus: nat}.
Variable sched: schedule num_cpus arr_seq.
(* Assumption: jobs only execute if they arrived.
This is used to eliminate jobs that arrive after end of the interval t1 + delta. *)
Hypothesis H_jobs_must_arrive_to_execute:
jobs_must_arrive_to_execute sched.
(* Assumption: jobs do not execute after they completed.
This is used to eliminate jobs that complete before the start of the interval t1. *)
Hypothesis H_completed_jobs_dont_execute:
completed_jobs_dont_execute job_cost sched.
(* Assumptiom: Jobs do not execute in parallel.
This is required to use interval lengths as a measure of service. *)
Hypothesis H_no_parallelism:
jobs_dont_execute_in_parallel sched.
(* Assumption: sporadic task model.
This is necessary to conclude that consecutive jobs ordered by arrival times
are separated by at least 'period' times units. *)
Hypothesis H_sporadic_tasks: sporadic_task_model task_period arr_seq job_task.
(* Before starting the proof, let's give simpler names to the definitions. *)
Let job_has_completed_by := completed job_cost sched.
Let no_deadline_misses_by (tsk: sporadic_task) (t: time) :=
task_misses_no_deadline_before job_cost job_deadline job_task
Let workload_of (tsk: sporadic_task) (t1 t2: time) :=
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
(* Now we define the theorem. Let tsk be any task in the taskset. *)
Variable tsk: sporadic_task.
(* Assumption: the task must have valid parameters:
a) period > 0 (used in divisions)
b) deadline of the jobs = deadline of the task
c) cost <= period
(used to prove that the distance between the first and last
jobs is at least (cost + n*period), where n is the number
of middle jobs. If cost >> period, the claim does not hold
for every task set. *)
Hypothesis H_valid_task_parameters:
is_valid_sporadic_task task_cost task_period task_deadline tsk.
(* Assumption: the task must have a restricted deadline.
This is required to prove that n_k (max_jobs) from Bertogna
and Cirinei's formula accounts for at least the number of
middle jobs (i.e., number of jobs - 2 in the worst case). *)
Hypothesis H_restricted_deadline: task_deadline tsk <= task_period tsk.
(* Consider an interval [t1, t1 + delta), with no deadline misses. *)
Variable t1 delta: time.
Hypothesis H_no_deadline_misses_during_interval: no_deadline_misses_by tsk (t1 + delta).
(* Assume that a response-time bound R_tsk for that task in any
schedule of this processor platform is also given,
such that R_tsk >= task_cost tsk. *)
Variable R_tsk: time.
Hypothesis H_response_time_ge_cost: R_tsk >= task_cost tsk.
Hypothesis H_response_time_bound :
forall (j: JobIn arr_seq),
job_task j = tsk ->
job_arrival j + R_tsk < t1 + delta ->
job_has_completed_by j (job_arrival j + R_tsk).
(* In this section, we prove that the workload of a task in the
interval [t1, t1 + delta) is bounded by W. *)
(* Let's simplify the names a bit. *)
Let t2 := t1 + delta.
Let n_k := max_jobs task_cost task_period tsk R_tsk delta.
Let workload_bound := W task_cost task_period tsk R_tsk delta.
Felipe Cerqueira
committed
(* Since we only care about the interference caused by tsk,
we identify the set of jobs of that task in [t1, t2). *)
Felipe Cerqueira
committed
jobs_of_task_scheduled_between job_task sched tsk t1 t2.
(* Now, let's consider the list of interfering jobs sorted by arrival time. *)
Let earlier_arrival := fun (x y: JobIn arr_seq) => job_arrival x <= job_arrival y.
Let sorted_jobs := (sort earlier_arrival interfering_jobs).
(* The first step consists in simplifying the sum corresponding
to the workload. *)
Felipe Cerqueira
committed
(* After switching to the definition of workload based on a list
of jobs, we show that sorting the list preserves the sum. *)
Lemma workload_bound_simpl_by_sorting_interfering_jobs :
Felipe Cerqueira
committed
workload_joblist job_task sched tsk t1 t2 =
\sum_(i <- sorted_jobs) service_during sched i t1 t2.
Felipe Cerqueira
committed
unfold workload_joblist; fold interfering_jobs.
rewrite (eq_big_perm sorted_jobs) /= //.
by rewrite -(perm_sort earlier_arrival).
(* Remember that both sequences have the same set of elements *)
Lemma workload_bound_job_in_same_sequence :
forall j,
(j \in interfering_jobs) = (j \in sorted_jobs).
Proof.
by apply perm_eq_mem; rewrite -(perm_sort earlier_arrival).
(* Remember that all jobs in the sorted sequence is an
interfering job of task tsk. *)
Lemma workload_bound_all_jobs_from_tsk :
forall j_i,
j_i \in sorted_jobs ->
job_task j_i = tsk /\
j_i \in jobs_scheduled_between sched t1 t2.
Proof.
intros j_i LTi.
Felipe Cerqueira
committed
rewrite -workload_bound_job_in_same_sequence mem_filter in LTi; des.
repeat split; [by apply/eqP | | by done].
unfold jobs_scheduled_between in *; rewrite mem_undup in LTi0.
apply mem_bigcat_nat_exists in LTi0; des.
rewrite mem_scheduled_jobs_eq_scheduled in LTi0.
apply service_implies_cumulative_service with (t := i);
first by apply/andP; split.
by rewrite -not_scheduled_no_service negbK.
(* Remember that consecutive jobs are ordered by arrival. *)
Lemma workload_bound_jobs_ordered_by_arrival :
forall i elem,
i < (size sorted_jobs).-1 ->
earlier_arrival (nth elem sorted_jobs i) (nth elem sorted_jobs i.+1).
assert (SORT: sorted earlier_arrival sorted_jobs).
by apply sort_sorted; unfold total, earlier_arrival; ins; apply leq_total.
by destruct sorted_jobs; simpl in *; [by rewrite ltn0 in LT | by apply/pathP].
Qed.
End SimplifyJobSequence.
(* Next, we show that if the number of jobs is no larger than n_k,
the workload bound trivially holds. *)
Section WorkloadNotManyJobs.
Lemma workload_bound_holds_for_at_most_n_k_jobs :
size sorted_jobs <= n_k ->
\sum_(i <- sorted_jobs) service_during sched i t1 t2 <=
workload_bound.
Proof.
intros LEnk.
rewrite -[\sum_(_ <- _ | _) _]add0n leq_add //.
apply leq_trans with (n := \sum_(x <- sorted_jobs) task_cost tsk);
last by rewrite big_const_seq iter_addn addn0 mulnC leq_mul2r; apply/orP; right.
{
rewrite [\sum_(_ <- _) service_during _ _ _ _]big_seq_cond.
rewrite [\sum_(_ <- _) task_cost _]big_seq_cond.
apply leq_sum; intros j_i; move/andP => [INi _].
apply workload_bound_all_jobs_from_tsk in INi; des.
eapply cumulative_service_le_task_cost;
[by apply H_completed_jobs_dont_execute | by apply INi |].
by apply H_jobs_have_valid_parameters.
}
Qed.
End WorkloadNotManyJobs.
(* Otherwise, assume that the number of jobs is larger than n_k >= 0.
First, consider the simple case with only one job. *)
Section WorkloadSingleJob.
(* Assume that there's at least one job in the sorted list. *)
Hypothesis H_at_least_one_job: size sorted_jobs > 0.
Variable elem: JobIn arr_seq.
Let j_fst := nth elem sorted_jobs 0.
(* The first job is an interfering job of task tsk. *)
Lemma workload_bound_j_fst_is_job_of_tsk :
job_task j_fst = tsk /\
j_fst \in jobs_scheduled_between sched t1 t2.
Proof.
by apply workload_bound_all_jobs_from_tsk, mem_nth.
Qed.
(* The workload bound holds for the single job. *)
Lemma workload_bound_holds_for_a_single_job :
\sum_(0 <= i < 1) service_during sched (nth elem sorted_jobs i) t1 t2 <=
Proof.
unfold workload_bound, W; fold n_k.
have INfst := workload_bound_j_fst_is_job_of_tsk; des.
rewrite big_nat_recr // big_geq // [nth]lock /= -lock add0n.
destruct n_k; last first.
rewrite -[service_during _ _ _ _]add0n; rewrite leq_add //.
rewrite -[service_during _ _ _ _]add0n [_* task_cost tsk]mulSnr.
[| by apply INfst
| by apply H_jobs_have_valid_parameters].
rewrite 2!mul0n addn0 subn0 leq_min; apply/andP; split.
{
by eapply cumulative_service_le_task_cost;
[| by apply INfst
| by apply H_jobs_have_valid_parameters].
}
{
rewrite -addnBA // -[service_during _ _ _ _]addn0.
(* Next, consider the last case where there are at least two jobs:
the first job j_fst, and the last job j_lst. *)
Variable num_mid_jobs: nat.
Hypothesis H_at_least_two_jobs : size sorted_jobs = num_mid_jobs.+2.
Variable elem: JobIn arr_seq.
Let j_fst := nth elem sorted_jobs 0.
Let j_lst := nth elem sorted_jobs num_mid_jobs.+1.
(* The last job is an interfering job of task tsk. *)
Lemma workload_bound_j_lst_is_job_of_tsk :
job_task j_lst = tsk /\
j_lst \in jobs_scheduled_between sched t1 t2.
Proof.
apply workload_bound_all_jobs_from_tsk, mem_nth.
by rewrite H_at_least_two_jobs.
Qed.
(* The response time of the first job must fall inside the interval. *)
Lemma workload_bound_response_time_of_first_job_inside_interval :
t1 <= job_arrival j_fst + R_tsk.
Proof.
rewrite leqNgt; apply /negP; unfold not; intro LTt1.
exploit workload_bound_all_jobs_from_tsk.
apply mem_nth; instantiate (1 := 0).
apply ltn_trans with (n := 1); [by done | by rewrite H_at_least_two_jobs].
instantiate (1 := elem); move => [FSTtsk [/eqP FSTserv FSTin]].
apply FSTserv.
apply (cumulative_service_after_job_rt_zero job_cost) with (R := R_tsk);
by apply leq_trans with (n := t1); last by apply leq_addr.
(* The arrival of the last job must also fall inside the interval. *)
Lemma workload_bound_last_job_arrives_before_end_of_interval :
job_arrival j_lst < t2.
Proof.
rewrite leqNgt; apply/negP; unfold not; intro LT2.
exploit workload_bound_all_jobs_from_tsk.
{
apply mem_nth; instantiate (1 := num_mid_jobs.+1).
by rewrite -(ltn_add2r 1) addn1 H_at_least_two_jobs addn1.
}
instantiate (1 := elem); move => [LSTtsk [/eqP LSTserv LSTin]].
by unfold service_during; apply LSTserv, cumulative_service_before_job_arrival_zero.
Qed.
(* Next, we upper-bound the service of the first and last jobs using their arrival times. *)
Lemma workload_bound_service_of_first_and_last_jobs :
service_during sched j_fst t1 t2 +
service_during sched j_lst t1 t2 <=
(job_arrival j_fst + R_tsk - t1) + (t2 - job_arrival j_lst).
Proof.
apply leq_add; unfold service_during.
{
rewrite -[_ + _ - _]mul1n -[1*_]addn0 -iter_addn -big_const_nat.
apply leq_trans with (n := \sum_(t1 <= t < job_arrival j_fst + R_tsk)
service_at sched j_fst t);
last by apply leq_sum; ins; apply service_at_most_one.
destruct (job_arrival j_fst + R_tsk < t2) eqn:LEt2; last first.
{
unfold t2; apply negbT in LEt2; rewrite -ltnNge in LEt2.
rewrite -> big_cat_nat with (n := t1 + delta) (p := job_arrival j_fst + R_tsk);
[by apply leq_addr | by apply leq_addr | by done].
}
{
rewrite -> big_cat_nat with (n := job_arrival j_fst + R_tsk);
[| by apply workload_bound_response_time_of_first_job_inside_interval
| by apply ltnW].
rewrite -{2}[\sum_(_ <= _ < _) _]addn0 /= leq_add2l leqn0; apply/eqP.
apply (cumulative_service_after_job_rt_zero job_cost) with (R := R_tsk);
apply H_response_time_bound; last by done.
exploit workload_bound_all_jobs_from_tsk.
by apply mem_nth; instantiate (1 := 0); rewrite H_at_least_two_jobs.
by instantiate (1 := elem); move => [FSTtsk _].
}
}
{
rewrite -[_ - _]mul1n -[1 * _]addn0 -iter_addn -big_const_nat.
destruct (job_arrival j_lst <= t1) eqn:LT.
{
apply leq_trans with (n := \sum_(job_arrival j_lst <= t < t2)
first by rewrite -> big_cat_nat with (m := job_arrival j_lst) (n := t1);
[by apply leq_addl | by ins | by apply leq_addr].
by apply leq_sum; ins; apply service_at_most_one.
}
{
apply negbT in LT; rewrite -ltnNge in LT.
rewrite -> big_cat_nat with (n := job_arrival j_lst);
[| by apply ltnW
| by apply ltnW, workload_bound_last_job_arrives_before_end_of_interval].
rewrite /= -[\sum_(_ <= _ < _) 1]add0n; apply leq_add.
rewrite cumulative_service_before_job_arrival_zero;
[by apply leqnn | by ins | by apply leqnn].
by apply leq_sum; ins; apply service_at_most_one.
(* Simplify the expression from the previous lemma. *)
Lemma workload_bound_simpl_expression_with_first_and_last :
job_arrival j_fst + R_tsk - t1 + (t2 - job_arrival j_lst) =
delta + R_tsk - (job_arrival j_lst - job_arrival j_fst).
Proof.
have lemma1 := workload_bound_last_job_arrives_before_end_of_interval.
have lemma2 := workload_bound_response_time_of_first_job_inside_interval.
rewrite addnBA; last by apply ltnW.
rewrite subh1 // -addnBA; last by apply leq_addr.
rewrite addnC [job_arrival _ + _]addnC.
unfold t2; rewrite [t1 + _]addnC -[delta + t1 - _]subnBA // subnn subn0.
rewrite addnA -subnBA; first by ins.
unfold j_fst, j_lst. rewrite -[_.+1]add0n.
apply prev_le_next; last by rewrite H_at_least_two_jobs add0n leqnn.
by ins; apply workload_bound_jobs_ordered_by_arrival.
Qed.
Lemma workload_bound_service_of_middle_jobs :
\sum_(0 <= i < num_mid_jobs)
service_during sched (nth elem sorted_jobs i.+1) t1 t2 <=
num_mid_jobs * task_cost tsk.
Proof.
apply leq_trans with (n := num_mid_jobs * task_cost tsk);
apply leq_trans with (n := \sum_(0 <= i < num_mid_jobs) task_cost tsk);
last by rewrite big_const_nat iter_addn addn0 mulnC subn0.
rewrite big_nat_cond [\sum_(0 <= i < num_mid_jobs) task_cost _]big_nat_cond.
apply leq_sum; intros i; rewrite andbT; move => /andP LT; des.
eapply cumulative_service_le_task_cost;
[by apply H_completed_jobs_dont_execute | | by apply H_jobs_have_valid_parameters].
exploit workload_bound_all_jobs_from_tsk.
{
instantiate (1 := nth elem sorted_jobs i.+1).
apply mem_nth; rewrite H_at_least_two_jobs.
by rewrite ltnS; apply leq_trans with (n := num_mid_jobs).
}
by ins; des.
Qed.
(* Conclude that the distance between first and last is at least num_mid_jobs + 1 periods. *)
Lemma workload_bound_many_periods_in_between :
job_arrival j_lst - job_arrival j_fst >= num_mid_jobs.+1 * (task_period tsk).
Proof.
assert (EQnk: num_mid_jobs.+1=(size sorted_jobs).-1).
by rewrite H_at_least_two_jobs.
unfold j_fst, j_lst; rewrite EQnk telescoping_sum;
last by ins; apply workload_bound_jobs_ordered_by_arrival.
rewrite -[_ * _ tsk]addn0 mulnC -iter_addn -{1}[_.-1]subn0 -big_const_nat.
rewrite big_nat_cond [\sum_(0 <= i < _)(_-_)]big_nat_cond.
apply leq_sum; intros i; rewrite andbT; move => /andP LT; des.
(* To simplify, call the jobs 'cur' and 'next' *)
set cur := nth elem sorted_jobs i.
set next := nth elem sorted_jobs i.+1.
(* Show that cur arrives earlier than next *)
assert (ARRle: job_arrival cur <= job_arrival next).
by unfold cur, next; apply workload_bound_jobs_ordered_by_arrival.
(* Show that both cur and next are in the arrival sequence *)
assert (INnth: cur \in interfering_jobs /\ next \in interfering_jobs).
{
rewrite 2!workload_bound_job_in_same_sequence; split.
by apply mem_nth, (ltn_trans LT0); destruct sorted_jobs; ins.
by apply mem_nth; destruct sorted_jobs; ins.
}
(* Use the sporadic task model to conclude that cur and next are separated
by at least (task_period tsk) units. Of course this only holds if cur != next.
Since we don't know much about the list (except that it's sorted), we must
also prove that it doesn't contain duplicates. *)
assert (CUR_LE_NEXT: job_arrival cur + task_period (job_task cur) <= job_arrival next).
{
apply H_sporadic_tasks; last by ins.
unfold cur, next, not; intro EQ; move: EQ => /eqP EQ.
rewrite nth_uniq in EQ; first by move: EQ => /eqP EQ; intuition.
by apply ltn_trans with (n := (size sorted_jobs).-1); destruct sorted_jobs; ins.
by destruct sorted_jobs; ins.
by rewrite sort_uniq -/interfering_jobs filter_uniq // undup_uniq.
by move: INnth INnth0 => /eqP INnth /eqP INnth0; rewrite INnth INnth0.
}
by rewrite subh3 // addnC; move: INnth => /eqP INnth; rewrite -INnth.
Qed.
(* Now, we prove an auxiliary lemma for the next result.
The statement is not meaningful, since it's part of a proof
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
Lemma workload_bound_helper_lemma :
job_arrival j_fst + task_period tsk + delta <= job_arrival j_lst ->
t1 <= job_arrival j_fst + task_deadline tsk.
Proof.
intros LE.
rename H_jobs_have_valid_parameters into PARAMS,
H_completed_jobs_dont_execute into EXEC,
H_no_deadline_misses_during_interval into NOMISS.
unfold task_misses_no_deadline_before, valid_sporadic_job,
job_misses_no_deadline, completed in *; des.
exploit workload_bound_all_jobs_from_tsk.
{
apply mem_nth; instantiate (1 := 0).
apply ltn_trans with (n := 1); [by done | by rewrite H_at_least_two_jobs].
}
instantiate (1 := elem); move => [FSTtsk [/eqP FSTserv FSTin]].
exploit (NOMISS j_fst FSTtsk); last intros COMP.
{
(* Prove that arr_fst + d_k <= t2 *)
apply leq_ltn_trans with (n := job_arrival j_lst);
last by apply workload_bound_last_job_arrives_before_end_of_interval.
apply leq_trans with (n := job_arrival j_fst + task_period tsk + delta); last by done.
rewrite -addnA leq_add2l -[job_deadline _]addn0.
apply leq_add; last by ins.
specialize (PARAMS j_fst); des.
by rewrite PARAMS1 FSTtsk H_restricted_deadline.
}
rewrite leqNgt; apply/negP; unfold not; intro LTt1.
(* Now we assume that (job_arrival j_fst + d_k < t1) and reach a contradiction.
Since j_fst doesn't miss deadlines, then the service it receives between t1 and t2
equals 0, which contradicts the previous assumption that j_fst interferes in
the scheduling window. *)
apply FSTserv.
{
unfold service_during; apply/eqP; rewrite -leqn0.
rewrite <- leq_add2l with (p := job_cost j_fst); rewrite addn0.
move: COMP => /eqP COMP; unfold service in COMP; rewrite -{1}COMP.
apply leq_trans with (n := service sched j_fst t2); last by apply EXEC.
unfold service; rewrite -> big_cat_nat with (m := 0) (p := t2) (n := t1);
[rewrite leq_add2r /= | by ins | by apply leq_addr].
rewrite -> big_cat_nat with (p := t1) (n := job_arrival j_fst + job_deadline j_fst);
[by rewrite /= -{1}[\sum_(_ <= _ < _) _]addn0 leq_add2l | by ins | ].
by apply ltnW; specialize (PARAMS j_fst); des; rewrite PARAMS1 FSTtsk.
}
Qed.
(* Prove that n_k is at least the number of the middle jobs *)
Lemma workload_bound_n_k_covers_middle_jobs :
n_k >= num_mid_jobs.
Proof.
rename H_valid_task_parameters into PARAMS.
unfold is_valid_sporadic_task in *; des.
rewrite leqNgt; apply/negP; unfold not; intro LTnk.
assert (DISTmax: job_arrival j_lst - job_arrival j_fst >= delta + task_period tsk).
{
apply leq_trans with (n := n_k.+2 * task_period tsk).
{
rewrite -addn1 mulnDl mul1n leq_add2r.
apply leq_trans with (n := delta + R_tsk - task_cost tsk);
first by rewrite -addnBA //; apply leq_addr.
apply leq_trans with (num_mid_jobs.+1 * task_period tsk);
first by rewrite leq_mul2r; apply/orP; right.
by apply workload_bound_many_periods_in_between.
}
rewrite <- leq_add2r with (p := job_arrival j_fst) in DISTmax.
rewrite addnC subh1 in DISTmax; last first.
{
unfold j_fst, j_lst; rewrite -[_.+1]add0n.
apply prev_le_next; last by rewrite H_at_least_two_jobs add0n leqnn.
by ins; apply workload_bound_jobs_ordered_by_arrival.
}
rewrite -subnBA // subnn subn0 in DISTmax.
rewrite [delta + task_period tsk]addnC addnA in DISTmax.
have BEFOREt2 := workload_bound_last_job_arrives_before_end_of_interval.
generalize BEFOREt2; move: BEFOREt2; rewrite {1}ltnNge; move => /negP BEFOREt2'.
intros BEFOREt2; apply BEFOREt2'; clear BEFOREt2'.
apply leq_trans with (n := job_arrival j_fst + task_deadline tsk + delta);
last by apply leq_trans with (n := job_arrival j_fst + task_period tsk + delta);
[rewrite leq_add2r leq_add2l; apply H_restricted_deadline | apply DISTmax].
unfold t2; rewrite leq_add2r.
by apply workload_bound_helper_lemma.
Qed.
(* If n_k = num_mid_jobs, then the workload bound holds. *)
Lemma workload_bound_n_k_equals_num_mid_jobs :
num_mid_jobs = n_k ->
service_during sched j_lst t1 t2 +
service_during sched j_fst t1 t2 +
service_during sched (nth elem sorted_jobs i.+1) t1 t2
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
<= workload_bound.
Proof.
rename H_valid_task_parameters into PARAMS.
unfold is_valid_sporadic_task in *; des.
unfold workload_bound, W; fold n_k.
move => NK; rewrite -NK.
apply leq_add;
last by apply workload_bound_service_of_middle_jobs.
apply leq_trans with (delta + R_tsk - (job_arrival j_lst - job_arrival j_fst)).
{
rewrite addnC -workload_bound_simpl_expression_with_first_and_last.
by apply workload_bound_service_of_first_and_last_jobs.
}
rewrite leq_min; apply/andP; split.
{
rewrite leq_subLR [_ + task_cost _]addnC -leq_subLR.
apply leq_trans with (num_mid_jobs.+1 * task_period tsk);
last by apply workload_bound_many_periods_in_between.
rewrite NK ltnW // -ltn_divLR;
last by apply PARAMS0.
by unfold n_k, max_jobs, div_floor.
}
{
rewrite -subnDA; apply leq_sub2l.
apply leq_trans with (n := num_mid_jobs.+1 * task_period tsk);
last by apply workload_bound_many_periods_in_between.
rewrite -addn1 addnC mulnDl mul1n.
by rewrite leq_add2l; last by apply PARAMS3.
}
Qed.
(* If n_k = num_mid_jobs + 1, then the workload bound holds. *)
Lemma workload_bound_n_k_equals_num_mid_jobs_plus_1 :
num_mid_jobs.+1 = n_k ->
service_during sched j_lst t1 t2 +
service_during sched j_fst t1 t2 +
service_during sched (nth elem sorted_jobs i.+1) t1 t2
<= workload_bound.
Proof.
unfold workload_bound, W; fold n_k.
move => NK; rewrite -NK.
rewrite -{2}addn1 mulnDl mul1n [_* _ + _]addnC addnA addn_minl.
apply leq_add; last by apply workload_bound_service_of_middle_jobs.
rewrite leq_min; apply/andP; split.
assert (SIZE: 0 < size sorted_jobs).
by rewrite H_at_least_two_jobs.
have INfst := workload_bound_j_fst_is_job_of_tsk SIZE elem;
have INlst := workload_bound_j_lst_is_job_of_tsk; des.
by apply leq_add; apply cumulative_service_le_task_cost with (task_deadline0 := task_deadline)
(job_cost0 := job_cost) (job_deadline0 := job_deadline) (job_task0 := job_task).
{
rewrite subnAC subnK; last first.
{
assert (TMP: delta + R_tsk = task_cost tsk + (delta + R_tsk - task_cost tsk));
first by rewrite subnKC; [by ins | by rewrite -[task_cost _]add0n; apply leq_add].
rewrite TMP; clear TMP.
rewrite -{1}[task_cost _]addn0 -addnBA NK; [by apply leq_add | by apply leq_trunc_div].
}
apply leq_trans with (delta + R_tsk - (job_arrival j_lst - job_arrival j_fst)).
{
rewrite addnC -workload_bound_simpl_expression_with_first_and_last.
by apply workload_bound_service_of_first_and_last_jobs.
}
{
by apply leq_sub2l, workload_bound_many_periods_in_between.
}
}
Qed.
End WorkloadTwoOrMoreJobs.
(* Using the lemmas above, we prove the main theorem about the workload bound. *)
Theorem workload_bounded_by_W :
workload_of tsk t1 (t1 + delta) <= workload_bound.
Proof.
rename H_jobs_have_valid_parameters into job_properties,
H_no_deadline_misses_during_interval into no_dl_misses,
H_valid_task_parameters into task_properties.
unfold valid_sporadic_job, valid_realtime_job, restricted_deadline_model,
valid_sporadic_taskset, is_valid_sporadic_task, sporadic_task_model,
workload_of, no_deadline_misses_by, workload_bound, W in *; ins; des.
fold n_k.
(* Use the definition of workload based on list of jobs. *)
Felipe Cerqueira
committed
rewrite workload_eq_workload_joblist.
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
(* Now we order the list by job arrival time. *)
rewrite workload_bound_simpl_by_sorting_interfering_jobs.
(* Next, we show that the workload bound holds if n_k
is no larger than the number of interferings jobs. *)
destruct (size sorted_jobs <= n_k) eqn:NUM;
first by apply workload_bound_holds_for_at_most_n_k_jobs.
apply negbT in NUM; rewrite -ltnNge in NUM.
(* Find some dummy element to use in the nth function *)
assert (EX: exists elem: JobIn arr_seq, True).
destruct sorted_jobs; [ by rewrite ltn0 in NUM | by exists j].
destruct EX as [elem _].
(* Now we index the sum to access the first and last elements. *)
rewrite (big_nth elem).
(* First, we show that the bound holds for an empty list of jobs. *)
destruct (size sorted_jobs) as [| n] eqn:SIZE;
first by rewrite big_geq.
(* Then, we show the same for a singleton set of jobs. *)
destruct n as [| num_mid_jobs];
first by apply workload_bound_holds_for_a_single_job; rewrite SIZE.
(* Knowing that we have at least two elements, we take first and last out of the sum *)
rewrite [nth]lock big_nat_recl // big_nat_recr // /= -lock.
rewrite addnA addnC addnA.
(* There are two cases to be analyze since n <= n_k < n + 2,
where n is the number of middle jobs. *)
have NK := workload_bound_n_k_covers_middle_jobs num_mid_jobs SIZE elem.
move: NK; rewrite leq_eqVlt orbC leq_eqVlt; move => /orP [NK | /eqP NK].
move: NK => /orP [/eqP NK | NK]; last by rewrite ltnS leqNgt NK in NUM.
{
(* Case 1: n_k = n + 1, where n is the number of middle jobs. *)
by apply (workload_bound_n_k_equals_num_mid_jobs_plus_1 num_mid_jobs).
}
{
(* Case 2: n_k = n, where n is the number of middle jobs. *)
by apply (workload_bound_n_k_equals_num_mid_jobs num_mid_jobs).