Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
Actris
Commits
58a96a4a
Commit
58a96a4a
authored
5 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Oops, add linked list file.
parent
e4f77c74
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/utils/llist.v
+213
-0
213 additions, 0 deletions
theories/utils/llist.v
with
213 additions
and
0 deletions
theories/utils/llist.v
0 → 100644
+
213
−
0
View file @
58a96a4a
From
iris
.
heap_lang
Require
Export
proofmode
notation
.
From
iris
.
heap_lang
Require
Import
assert
.
(** Immutable ML-style functional lists *)
Fixpoint
llist
`{
heapG
Σ
}
(
l
:
loc
)
(
vs
:
list
val
)
:
iProp
Σ
:=
match
vs
with
|
[]
=>
l
↦
NONEV
|
v
::
vs
=>
∃
l'
:
loc
,
l
↦
SOMEV
(
v
,
#
l'
)
∗
llist
l'
vs
end
%
I
.
Arguments
llist
:
simpl
never
.
Definition
lnil
:
val
:=
λ
:
<>
,
ref
NONE
.
Definition
lcons
:
val
:=
λ
:
"x"
"l"
,
"l"
<-
SOME
(
"x"
,
ref
(
!
"l"
));;
"l"
.
Definition
lisnil
:
val
:=
λ
:
"l"
,
match
:
!
"l"
with
SOME
"p"
=>
#
false
|
NONE
=>
#
true
end
.
Definition
lhead
:
val
:=
λ
:
"l"
,
match
:
!
"l"
with
SOME
"p"
=>
Fst
"p"
|
NONE
=>
assert
:
#
false
end
.
Definition
lpop
:
val
:=
λ
:
"l"
,
match
:
!
"l"
with
SOME
"p"
=>
"l"
<-
!
(
Snd
"p"
);;
Fst
"p"
|
NONE
=>
assert
:
#
false
end
.
Definition
llookup
:
val
:=
rec
:
"go"
"l"
"n"
:=
if
:
"n"
=
#
0
then
lhead
"l"
else
match
:
!
"l"
with
SOME
"p"
=>
"go"
(
Snd
"p"
)
(
"n"
-
#
1
)
|
NONE
=>
assert
:
#
false
end
.
Definition
llength
:
val
:=
rec
:
"go"
"l"
:=
match
:
!
"l"
with
NONE
=>
#
0
|
SOME
"p"
=>
#
1
+
"go"
(
Snd
"p"
)
end
.
Definition
lapp
:
val
:=
rec
:
"go"
"l"
"k"
:=
match
:
!
"l"
with
NONE
=>
"l"
<-
!
"k"
|
SOME
"p"
=>
"go"
(
Snd
"p"
)
"k"
end
.
Definition
lprep
:
val
:=
λ
:
"l"
"k"
,
lapp
"k"
"l"
;;
"l"
<-
!
"k"
.
Definition
lsnoc
:
val
:=
rec
:
"go"
"l"
"x"
:=
match
:
!
"l"
with
NONE
=>
"l"
<-
SOME
(
"x"
,
ref
NONE
)
|
SOME
"p"
=>
"go"
(
Snd
"p"
)
"x"
end
.
Definition
lsplit_at
:
val
:=
rec
:
"go"
"l"
"n"
:=
if
:
"n"
≤
#
0
then
let
:
"k"
:=
ref
(
!
"l"
)
in
"l"
<-
NONE
;;
"k"
else
match
:
!
"l"
with
NONE
=>
ref
NONE
|
SOME
"p"
=>
"go"
(
Snd
"p"
)
(
"n"
-
#
1
)
end
.
Definition
lsplit
:
val
:=
λ
:
"l"
,
lsplit_at
"l"
(
llength
"l"
`
quot
`
#
2
)
.
Section
lists
.
Context
`{
heapG
Σ
}
.
Implicit
Types
i
:
nat
.
Implicit
Types
v
:
val
.
Implicit
Types
vs
:
list
val
.
Local
Arguments
llist
{_
_}
_
!
_
/.
Lemma
lnil_spec
:
{{{
True
}}}
lnil
#
()
{{{
l
,
RET
#
l
;
llist
l
[]
}}}
.
Proof
.
iIntros
(
Φ
_)
"HΦ"
.
wp_lam
.
wp_alloc
l
.
by
iApply
"HΦ"
.
Qed
.
Lemma
lcons_spec
l
v
vs
:
{{{
llist
l
vs
}}}
lcons
v
#
l
{{{
RET
#
l
;
llist
l
(
v
::
vs
)
}}}
.
Proof
.
iIntros
(
Φ
)
"Hll HΦ"
.
wp_lam
.
destruct
vs
as
[|
v'
vs
];
simpl
;
wp_pures
.
-
wp_load
.
wp_alloc
k
.
wp_store
.
iApply
"HΦ"
;
eauto
with
iFrame
.
-
iDestruct
"Hll"
as
(
l'
)
"[Hl Hll]"
.
wp_load
.
wp_alloc
k
.
wp_store
.
iApply
"HΦ"
;
eauto
with
iFrame
.
Qed
.
Lemma
lisnil_spec
l
vs
:
{{{
llist
l
vs
}}}
lisnil
#
l
{{{
RET
#
(
if
vs
is
[]
then
true
else
false
);
llist
l
vs
}}}
.
Proof
.
iIntros
(
Φ
)
"Hll HΦ"
.
wp_lam
.
destruct
vs
as
[|
v'
vs
];
simpl
;
wp_pures
.
-
wp_load
;
wp_pures
.
by
iApply
"HΦ"
.
-
iDestruct
"Hll"
as
(
l'
)
"[Hl Hll]"
.
wp_load
;
wp_pures
.
iApply
"HΦ"
;
eauto
with
iFrame
.
Qed
.
Lemma
lhead_spec
l
v
vs
:
{{{
llist
l
(
v
::
vs
)
}}}
lhead
#
l
{{{
RET
v
;
llist
l
(
v
::
vs
)
}}}
.
Proof
.
iIntros
(
Φ
)
"/="
.
iDestruct
1
as
(
l'
)
"[Hl Hll]"
.
iIntros
"HΦ"
.
wp_lam
.
wp_load
;
wp_pures
.
iApply
"HΦ"
;
eauto
with
iFrame
.
Qed
.
Lemma
lpop_spec
l
v
vs
:
{{{
llist
l
(
v
::
vs
)
}}}
lpop
#
l
{{{
RET
v
;
llist
l
vs
}}}
.
Proof
.
iIntros
(
Φ
)
"/="
.
iDestruct
1
as
(
l'
)
"[Hl Hll]"
.
iIntros
"HΦ"
.
wp_lam
.
wp_load
.
wp_pures
.
destruct
vs
as
[|
v'
vs
];
simpl
;
wp_pures
.
-
wp_load
.
wp_store
.
wp_pures
.
iApply
"HΦ"
;
eauto
with
iFrame
.
-
iDestruct
"Hll"
as
(
l''
)
"[Hl' Hll]"
.
wp_load
.
wp_store
.
wp_pures
.
iApply
"HΦ"
;
eauto
with
iFrame
.
Qed
.
Lemma
llookup_spec
l
i
vs
v
:
vs
!!
i
=
Some
v
→
{{{
llist
l
vs
}}}
llookup
#
l
#
i
{{{
RET
v
;
llist
l
vs
}}}
.
Proof
.
iIntros
(
Hi
Φ
)
"Hll HΦ"
.
iInduction
vs
as
[|
v'
vs
]
"IH"
forall
(
l
i
v
Hi
Φ
);
[
done
|
simpl
;
wp_rec
;
wp_pures
]
.
destruct
i
as
[|
i
];
simplify_eq
/=
;
wp_pures
.
-
wp_apply
(
lhead_spec
with
"Hll"
);
iIntros
"Hll"
.
by
iApply
"HΦ"
.
-
iDestruct
"Hll"
as
(
l'
)
"[Hl' Hll]"
.
wp_load
;
wp_pures
.
rewrite
Nat2Z
.
inj_succ
Z
.
sub_1_r
Z
.
pred_succ
.
wp_apply
(
"IH"
with
"[//] Hll"
);
iIntros
"Hll"
.
iApply
"HΦ"
;
eauto
with
iFrame
.
Qed
.
Lemma
llength_spec
l
vs
:
{{{
llist
l
vs
}}}
llength
#
l
{{{
RET
#
(
length
vs
);
llist
l
vs
}}}
.
Proof
.
iIntros
(
Φ
)
"Hll HΦ"
.
iInduction
vs
as
[|
v
vs
]
"IH"
forall
(
l
Φ
);
simpl
;
wp_rec
;
wp_pures
.
-
wp_load
;
wp_pures
.
by
iApply
"HΦ"
.
-
iDestruct
"Hll"
as
(
l'
)
"[Hl' Hll]"
.
wp_load
;
wp_pures
.
wp_apply
(
"IH"
with
"Hll"
);
iIntros
"Hll"
.
wp_pures
.
rewrite
(
Nat2Z
.
inj_add
1
)
.
iApply
"HΦ"
;
eauto
with
iFrame
.
Qed
.
Lemma
lapp_spec
l1
l2
vs1
vs2
:
{{{
llist
l1
vs1
∗
llist
l2
vs2
}}}
lapp
#
l1
#
l2
{{{
RET
#
();
llist
l1
(
vs1
++
vs2
)
∗
l2
↦
-
}}}
.
Proof
.
iIntros
(
Φ
)
"[Hll1 Hll2] HΦ"
.
iInduction
vs1
as
[|
v1
vs1
]
"IH"
forall
(
l1
Φ
);
simpl
;
wp_rec
;
wp_pures
.
-
wp_load
.
wp_pures
.
destruct
vs2
as
[|
v2
vs2
];
simpl
;
wp_pures
.
+
wp_load
.
wp_store
.
iApply
"HΦ"
.
eauto
with
iFrame
.
+
iDestruct
"Hll2"
as
(
l2'
)
"[Hl2 Hll2]"
.
wp_load
.
wp_store
.
iApply
"HΦ"
.
iSplitR
"Hl2"
;
eauto
10
with
iFrame
.
-
iDestruct
"Hll1"
as
(
l'
)
"[Hl1 Hll1]"
.
wp_load
;
wp_pures
.
wp_apply
(
"IH"
with
"Hll1 Hll2"
);
iIntros
"[Hll Hl2]"
.
iApply
"HΦ"
;
eauto
with
iFrame
.
Qed
.
Lemma
lprep_spec
l1
l2
vs1
vs2
:
{{{
llist
l1
vs2
∗
llist
l2
vs1
}}}
lprep
#
l1
#
l2
{{{
RET
#
();
llist
l1
(
vs1
++
vs2
)
∗
l2
↦
-
}}}
.
Proof
.
iIntros
(
Φ
)
"[Hll1 Hll2] HΦ"
.
wp_lam
.
wp_apply
(
lapp_spec
with
"[$Hll2 $Hll1]"
);
iIntros
"[Hll2 Hl1]"
.
iDestruct
"Hl1"
as
(
w
)
"Hl1"
.
destruct
(
vs1
++
vs2
)
as
[|
v
vs
];
simpl
;
wp_pures
.
-
wp_load
.
wp_store
.
iApply
"HΦ"
;
eauto
with
iFrame
.
-
iDestruct
"Hll2"
as
(
l'
)
"[Hl2 Hll2]"
.
wp_load
.
wp_store
.
iApply
"HΦ"
;
iSplitR
"Hl2"
;
eauto
with
iFrame
.
Qed
.
Lemma
lsnoc_spec
l
vs
v
:
{{{
llist
l
vs
}}}
lsnoc
#
l
v
{{{
RET
#
();
llist
l
(
vs
++
[
v
])
}}}
.
Proof
.
iIntros
(
Φ
)
"Hll HΦ"
.
iInduction
vs
as
[|
v'
vs
]
"IH"
forall
(
l
Φ
);
simpl
;
wp_rec
;
wp_pures
.
-
wp_load
.
wp_alloc
k
.
wp_store
.
iApply
"HΦ"
;
eauto
with
iFrame
.
-
iDestruct
"Hll"
as
(
l'
)
"[Hl Hll]"
.
wp_load
;
wp_pures
.
wp_apply
(
"IH"
with
"Hll"
);
iIntros
"Hll"
.
iApply
"HΦ"
;
eauto
with
iFrame
.
Qed
.
Lemma
lsplit_at_spec
l
vs
(
n
:
nat
)
:
{{{
llist
l
vs
}}}
lsplit_at
#
l
#
n
{{{
k
,
RET
#
k
;
llist
l
(
take
n
vs
)
∗
llist
k
(
drop
n
vs
)
}}}
.
Proof
.
iIntros
(
Φ
)
"Hll HΦ"
.
iInduction
vs
as
[|
v
vs
]
"IH"
forall
(
l
n
Φ
);
simpl
;
wp_rec
;
wp_pures
.
-
destruct
n
as
[|
n
];
simpl
;
wp_pures
.
+
wp_load
.
wp_alloc
k
.
wp_store
.
iApply
"HΦ"
;
iFrame
.
+
wp_load
.
wp_alloc
k
.
iApply
"HΦ"
;
iFrame
.
-
iDestruct
"Hll"
as
(
l'
)
"[Hl Hll]"
.
destruct
n
as
[|
n
];
simpl
;
wp_pures
.
+
wp_load
.
wp_alloc
k
.
wp_store
.
iApply
"HΦ"
;
eauto
with
iFrame
.
+
wp_load
;
wp_pures
.
rewrite
Nat2Z
.
inj_succ
Z
.
sub_1_r
Z
.
pred_succ
.
wp_apply
(
"IH"
with
"[$]"
);
iIntros
(
k
)
"[Hll Hlk]"
.
iApply
"HΦ"
;
eauto
with
iFrame
.
Qed
.
Lemma
lsplit_spec
l
vs
:
{{{
llist
l
vs
}}}
lsplit
#
l
{{{
k
ws1
ws2
,
RET
#
k
;
⌜
vs
=
ws1
++
ws2
⌝
∗
llist
l
ws1
∗
llist
k
ws2
}}}
.
Proof
.
iIntros
(
Φ
)
"Hl HΦ"
.
wp_lam
.
wp_apply
(
llength_spec
with
"Hl"
);
iIntros
"Hl"
.
wp_pures
.
rewrite
Z
.
quot_div_nonneg
;
[|
lia
..]
.
rewrite
-
(
Z2Nat_inj_div
_
2
)
.
wp_apply
(
lsplit_at_spec
with
"Hl"
);
iIntros
(
k
)
"[Hl Hk]"
.
iApply
"HΦ"
.
iFrame
.
by
rewrite
take_drop
.
Qed
.
End
lists
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment