Newer
Older
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
Robbert Krebbers
committed
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
Require Export base tactics orders.
(** * Basic theorems *)
Section simple_collection.
Context `{SimpleCollection A C}.
Robbert Krebbers
committed
Lemma elem_of_empty x : x ∈ ∅ ↔ False.
Proof. split. apply not_elem_of_empty. done. Qed.
Lemma elem_of_union_l x X Y : x ∈ X → x ∈ X ∪ Y.
Proof. intros. apply elem_of_union. auto. Qed.
Lemma elem_of_union_r x X Y : x ∈ Y → x ∈ X ∪ Y.
Proof. intros. apply elem_of_union. auto. Qed.
Global Instance collection_subseteq: SubsetEq C := λ X Y,
Robbert Krebbers
committed
∀ x, x ∈ X → x ∈ Y.
Global Instance: BoundedJoinSemiLattice C.
Proof. firstorder auto. Qed.
Lemma elem_of_subseteq X Y : X ⊆ Y ↔ ∀ x, x ∈ X → x ∈ Y.
Proof. done. Qed.
Lemma elem_of_equiv X Y : X ≡ Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
Proof. firstorder. Qed.
Lemma elem_of_equiv_alt X Y :
X ≡ Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X).
Lemma elem_of_equiv_empty X : X ≡ ∅ ↔ ∀ x, x ∉ X.
Proof. firstorder. Qed.
Lemma elem_of_subseteq_singleton x X : x ∈ X ↔ {[ x ]} ⊆ X.
Proof.
split.
* intros ??. rewrite elem_of_singleton. intro. by subst.
* intros Ex. by apply (Ex x), elem_of_singleton.
Qed.
Robbert Krebbers
committed
Global Instance singleton_proper : Proper ((=) ==> (≡)) singleton.
Proof. repeat intro. by subst. Qed.
Global Instance elem_of_proper: Proper ((=) ==> (≡) ==> iff) (∈) | 5.
Lemma elem_of_union_list (Xs : list C) (x : A) :
Proof.
split.
* induction Xs; simpl; intros HXs.
+ by apply elem_of_empty in HXs.
+ setoid_rewrite elem_of_cons.
apply elem_of_union in HXs. naive_solver.
* intros [X []]. induction 1; simpl.
+ by apply elem_of_union_l.
Qed.
Lemma non_empty_singleton x : {[ x ]} ≢ ∅.
Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
Lemma not_elem_of_singleton x y : x ∉ {[ y ]} ↔ x ≠ y.
Proof. by rewrite elem_of_singleton. Qed.
Lemma not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y.
Proof. rewrite elem_of_union. tauto. Qed.
Section leibniz.
Context `{!LeibnizEquiv C}.
Lemma elem_of_equiv_L X Y : X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
Proof. unfold_leibniz. apply elem_of_equiv. Qed.
Lemma elem_of_equiv_alt_L X Y :
X = Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X).
Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
Lemma elem_of_equiv_empty_L X : X = ∅ ↔ ∀ x, x ∉ X.
Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
Lemma non_empty_singleton_L x : {[ x ]} ≠ ∅.
Proof. unfold_leibniz. apply non_empty_singleton. Qed.
End leibniz.
Section dec.
Context `{∀ X Y : C, Decision (X ⊆ Y)}.
Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x ∈ X) | 100.
Proof.
refine (cast_if (decide_rel (⊆) {[ x ]} X));
by rewrite elem_of_subseteq_singleton.
Defined.
End dec.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
(** * Tactics *)
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
let rec go H :=
lazymatch type of H with
| _ ∈ ∅ => apply elem_of_empty in H; destruct H
| ?x ∈ {[ ?y ]} =>
apply elem_of_singleton in H; try first [subst y | subst x]
| _ ∈ _ ∪ _ =>
let H1 := fresh in let H2 := fresh in apply elem_of_union in H;
destruct H as [H1|H2]; [go H1 | go H2]
| _ ∈ _ ∩ _ =>
let H1 := fresh in let H2 := fresh in apply elem_of_intersection in H;
destruct H as [H1 H2]; go H1; go H2
| _ ∈ _ ∖ _ =>
let H1 := fresh in let H2 := fresh in apply elem_of_difference in H;
destruct H as [H1 H2]; go H1; go H2
| ?x ∈ _ <$> _ =>
let H1 := fresh in apply elem_of_fmap in H;
destruct H as [? [? H1]]; try (subst x); go H1
| _ ∈ _ ≫= _ =>
let H1 := fresh in let H2 := fresh in apply elem_of_bind in H;
destruct H as [? [H1 H2]]; go H1; go H2
| ?x ∈ mret ?y =>
apply elem_of_ret in H; try first [subst y | subst x]
| _ ∈ mjoin _ ≫= _ =>
let H1 := fresh in let H2 := fresh in apply elem_of_join in H;
destruct H as [? [H1 H2]]; go H1; go H2
| _ => idtac
end in go H.
Tactic Notation "decompose_elem_of" :=
repeat_on_hyps (fun H => decompose_elem_of H).
Ltac decompose_empty := repeat
match goal with
| H : ∅ ≡ ∅ |- _ => clear H
| H : ∅ = ∅ |- _ => clear H
| H : ∅ ≡ _ |- _ => symmetry in H
| H : ∅ = _ |- _ => symmetry in H
| H : _ ∪ _ ≡ ∅ |- _ => apply empty_union in H; destruct H
| H : _ ∪ _ ≢ ∅ |- _ => apply non_empty_union in H; destruct H
| H : {[ _ ]} ≡ ∅ |- _ => destruct (non_empty_singleton _ H)
| H : _ ∪ _ = ∅ |- _ => apply empty_union_L in H; destruct H
| H : _ ∪ _ ≠ ∅ |- _ => apply non_empty_union_L in H; destruct H
| H : {[ _ ]} = ∅ |- _ => destruct (non_empty_singleton_L _ H)
(** The first pass of our collection tactic consists of eliminating all
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
Ltac unfold_elem_of :=
repeat_on_hyps (fun H =>
repeat match type of H with
| context [ _ ⊆ _ ] => setoid_rewrite elem_of_subseteq in H
| context [ _ ⊂ _ ] => setoid_rewrite subset_spec in H
| context [ _ ≡ ∅ ] => setoid_rewrite elem_of_equiv_empty in H
| context [ _ ≡ _ ] => setoid_rewrite elem_of_equiv_alt in H
| context [ _ = ∅ ] => setoid_rewrite elem_of_equiv_empty_L in H
| context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
| context [ _ ∈ ∅ ] => setoid_rewrite elem_of_empty in H
| context [ _ ∈ {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
| context [ _ ∈ _ ∪ _ ] => setoid_rewrite elem_of_union in H
| context [ _ ∈ _ ∩ _ ] => setoid_rewrite elem_of_intersection in H
| context [ _ ∈ _ ∖ _ ] => setoid_rewrite elem_of_difference in H
| context [ _ ∈ _ <$> _ ] => setoid_rewrite elem_of_fmap in H
| context [ _ ∈ mret _ ] => setoid_rewrite elem_of_ret in H
| context [ _ ∈ _ ≫= _ ] => setoid_rewrite elem_of_bind in H
| context [ _ ∈ mjoin _ ] => setoid_rewrite elem_of_join in H
end);
repeat match goal with
| |- context [ _ ⊆ _ ] => setoid_rewrite elem_of_subseteq
| |- context [ _ ⊂ _ ] => setoid_rewrite subset_spec
| |- context [ _ ≡ ∅ ] => setoid_rewrite elem_of_equiv_empty
| |- context [ _ ≡ _ ] => setoid_rewrite elem_of_equiv_alt
| |- context [ _ = ∅ ] => setoid_rewrite elem_of_equiv_empty_L
| |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
Robbert Krebbers
committed
| |- context [ _ ∈ ∅ ] => setoid_rewrite elem_of_empty
| |- context [ _ ∈ {[ _ ]} ] => setoid_rewrite elem_of_singleton
| |- context [ _ ∈ _ ∪ _ ] => setoid_rewrite elem_of_union
| |- context [ _ ∈ _ ∩ _ ] => setoid_rewrite elem_of_intersection
| |- context [ _ ∈ _ ∖ _ ] => setoid_rewrite elem_of_difference
| |- context [ _ ∈ _ <$> _ ] => setoid_rewrite elem_of_fmap
| |- context [ _ ∈ mret _ ] => setoid_rewrite elem_of_ret
| |- context [ _ ∈ _ ≫= _ ] => setoid_rewrite elem_of_bind
| |- context [ _ ∈ mjoin _ ] => setoid_rewrite elem_of_join
Robbert Krebbers
committed
(** The tactic [solve_elem_of tac] composes the above tactic with [intuition].
For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal. *)
Tactic Notation "solve_elem_of" tactic3(tac) :=
decompose_empty;
Robbert Krebbers
committed
unfold_elem_of;
solve [intuition (simplify_equality; tac)].
Tactic Notation "solve_elem_of" := solve_elem_of auto.
(** For goals with quantifiers we could use the above tactic but with
[firstorder] instead of [intuition] as finishing tactic. However, [firstorder]
fails or loops on very small goals generated by [solve_elem_of] already. We
use the [naive_solver] tactic as a substitute. This tactic either fails or
proves the goal. *)
Tactic Notation "esolve_elem_of" tactic3(tac) :=
Robbert Krebbers
committed
simpl in *;
decompose_empty;
Robbert Krebbers
committed
unfold_elem_of;
naive_solver tac.
Tactic Notation "esolve_elem_of" := esolve_elem_of eauto.
(** * More theorems *)
Section collection.
Context `{Collection A C}.
Global Instance: LowerBoundedLattice C.
Proof.
split.
* apply _.
* firstorder auto.
* solve_elem_of.
Qed.
Lemma intersection_singletons x : {[x]} ∩ {[x]} ≡ {[x]}.
Proof. esolve_elem_of. Qed.
Lemma difference_twice X Y : (X ∖ Y) ∖ Y ≡ X ∖ Y.
Proof. esolve_elem_of. Qed.
Lemma empty_difference X Y : X ⊆ Y → X ∖ Y ≡ ∅.
Proof. esolve_elem_of. Qed.
Lemma difference_diag X : X ∖ X ≡ ∅.
Proof. esolve_elem_of. Qed.
Lemma difference_union_distr_l X Y Z : (X ∪ Y) ∖ Z ≡ X ∖ Z ∪ Y ∖ Z.
Proof. esolve_elem_of. Qed.
Lemma difference_intersection_distr_l X Y Z : (X ∩ Y) ∖ Z ≡ X ∖ Z ∩ Y ∖ Z.
Proof. esolve_elem_of. Qed.
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
Section leibniz.
Context `{!LeibnizEquiv C}.
Lemma intersection_singletons_L x : {[x]} ∩ {[x]} = {[x]}.
Proof. unfold_leibniz. apply intersection_singletons. Qed.
Lemma difference_twice_L X Y : (X ∖ Y) ∖ Y = X ∖ Y.
Proof. unfold_leibniz. apply difference_twice. Qed.
Lemma empty_difference_L X Y : X ⊆ Y → X ∖ Y = ∅.
Proof. unfold_leibniz. apply empty_difference. Qed.
Lemma difference_diag_L X : X ∖ X = ∅.
Proof. unfold_leibniz. apply difference_diag. Qed.
Lemma difference_union_distr_l_L X Y Z : (X ∪ Y) ∖ Z = X ∖ Z ∪ Y ∖ Z.
Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Lemma difference_intersection_distr_l_L X Y Z :
(X ∩ Y) ∖ Z = X ∖ Z ∩ Y ∖ Z.
Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
End leibniz.
Section dec.
Context `{∀ X Y : C, Decision (X ⊆ Y)}.
Lemma not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y.
Proof.
rewrite elem_of_intersection.
destruct (decide (x ∈ X)); tauto.
Qed.
Lemma not_elem_of_difference x X Y : x ∉ X ∖ Y ↔ x ∉ X ∨ x ∈ Y.
Proof.
rewrite elem_of_difference.
destruct (decide (x ∈ Y)); tauto.
Qed.
Lemma union_difference X Y : X ⊆ Y → Y ≡ X ∪ Y ∖ X.
Proof.
split; intros x; rewrite !elem_of_union, elem_of_difference.
* destruct (decide (x ∈ X)); intuition.
* intuition.
Qed.
Lemma non_empty_difference X Y : X ⊂ Y → Y ∖ X ≢ ∅.
Proof.
intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
destruct (decide (x ∈ X)); esolve_elem_of.
Qed.
Context `{!LeibnizEquiv C}.
Lemma union_difference_L X Y : X ⊆ Y → Y = X ∪ Y ∖ X.
Proof. unfold_leibniz. apply union_difference. Qed.
Lemma non_empty_difference_L X Y : X ⊂ Y → Y ∖ X ≠ ∅.
Proof. unfold_leibniz. apply non_empty_difference. Qed.
End dec.
End collection.
Section collection_ops.
Context `{CollectionOps A C}.
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
Lemma elem_of_intersection_with_list (f : A → A → option A) Xs Y x :
x ∈ intersection_with_list f Y Xs ↔ ∃ xs y,
Forall2 (∈) xs Xs ∧ y ∈ Y ∧ foldr (λ x, (≫= f x)) (Some y) xs = Some x.
Proof.
split.
* revert x. induction Xs; simpl; intros x HXs.
+ eexists [], x. intuition.
+ rewrite elem_of_intersection_with in HXs.
destruct HXs as (x1 & x2 & Hx1 & Hx2 & ?).
destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
eexists (x1 :: xs), y. intuition (simplify_option_equality; auto).
* intros (xs & y & Hxs & ? & Hx). revert x Hx.
induction Hxs; intros; simplify_option_equality; [done |].
rewrite elem_of_intersection_with. naive_solver.
Qed.
Lemma intersection_with_list_ind (P Q : A → Prop) f Xs Y :
(∀ y, y ∈ Y → P y) →
Forall (λ X, ∀ x, x ∈ X → Q x) Xs →
(∀ x y z, Q x → P y → f x y = Some z → P z) →
∀ x, x ∈ intersection_with_list f Y Xs → P x.
Proof.
intros HY HXs Hf.
induction Xs; simplify_option_equality; [done |].
intros x Hx. rewrite elem_of_intersection_with in Hx.
decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
Qed.
End collection_ops.
Robbert Krebbers
committed
(** * Sets without duplicates up to an equivalence *)
Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Definition elem_of_upto (x : A) (X : B) := ∃ y, y ∈ X ∧ R x y.
Definition no_dup (X : B) := ∀ x y, x ∈ X → y ∈ X → R x y → x = y.
Global Instance: Proper ((≡) ==> iff) (elem_of_upto x).
Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Global Instance: Proper (R ==> (≡) ==> iff) elem_of_upto.
Proof.
intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
* rewrite <-E1, <-E2; intuition.
* rewrite E1, E2; intuition.
Qed.
Global Instance: Proper ((≡) ==> iff) no_dup.
Proof. firstorder. Qed.
Lemma elem_of_upto_elem_of x X : x ∈ X → elem_of_upto x X.
Robbert Krebbers
committed
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers
committed
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]} ↔ R x y.
Robbert Krebbers
committed
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma elem_of_upto_union X Y x :
elem_of_upto x (X ∪ Y) ↔ elem_of_upto x X ∨ elem_of_upto x Y.
Robbert Krebbers
committed
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma not_elem_of_upto x X : ¬elem_of_upto x X → ∀ y, y ∈ X → ¬R x y.
Robbert Krebbers
committed
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers
committed
Proof. unfold no_dup. solve_elem_of. Qed.
Lemma no_dup_add x X : ¬elem_of_upto x X → no_dup X → no_dup ({[ x ]} ∪ X).
Robbert Krebbers
committed
Proof. unfold no_dup, elem_of_upto. esolve_elem_of. Qed.
Lemma no_dup_inv_add x X : x ∉ X → no_dup ({[ x ]} ∪ X) → ¬elem_of_upto x X.
Proof.
intros Hin Hnodup [y [??]].
Robbert Krebbers
committed
rewrite (Hnodup x y) in Hin; solve_elem_of.
Lemma no_dup_inv_union_l X Y : no_dup (X ∪ Y) → no_dup X.
Robbert Krebbers
committed
Proof. unfold no_dup. solve_elem_of. Qed.
Lemma no_dup_inv_union_r X Y : no_dup (X ∪ Y) → no_dup Y.
Robbert Krebbers
committed
Proof. unfold no_dup. solve_elem_of. Qed.
Robbert Krebbers
committed
(** * Quantifiers *)
Context `{SimpleCollection A B} (P : A → Prop).
Definition cforall X := ∀ x, x ∈ X → P x.
Definition cexists X := ∃ x, x ∈ X ∧ P x.
Lemma cforall_empty : cforall ∅.
Robbert Krebbers
committed
Proof. unfold cforall. solve_elem_of. Qed.
Lemma cforall_singleton x : cforall {[ x ]} ↔ P x.
Robbert Krebbers
committed
Proof. unfold cforall. solve_elem_of. Qed.
Lemma cforall_union X Y : cforall X → cforall Y → cforall (X ∪ Y).
Robbert Krebbers
committed
Proof. unfold cforall. solve_elem_of. Qed.
Lemma cforall_union_inv_1 X Y : cforall (X ∪ Y) → cforall X.
Robbert Krebbers
committed
Proof. unfold cforall. solve_elem_of. Qed.
Lemma cforall_union_inv_2 X Y : cforall (X ∪ Y) → cforall Y.
Robbert Krebbers
committed
Proof. unfold cforall. solve_elem_of. Qed.
Robbert Krebbers
committed
Proof. unfold cexists. esolve_elem_of. Qed.
Lemma cexists_singleton x : cexists {[ x ]} ↔ P x.
Robbert Krebbers
committed
Proof. unfold cexists. esolve_elem_of. Qed.
Lemma cexists_union_1 X Y : cexists X → cexists (X ∪ Y).
Robbert Krebbers
committed
Proof. unfold cexists. esolve_elem_of. Qed.
Lemma cexists_union_2 X Y : cexists Y → cexists (X ∪ Y).
Robbert Krebbers
committed
Proof. unfold cexists. esolve_elem_of. Qed.
Lemma cexists_union_inv X Y : cexists (X ∪ Y) → cexists X ∨ cexists Y.
Robbert Krebbers
committed
Proof. unfold cexists. esolve_elem_of. Qed.
Section more_quantifiers.
Context `{Collection A B}.
Robbert Krebbers
committed
Lemma cforall_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X :
Robbert Krebbers
committed
Proof. unfold cforall. naive_solver. Qed.
Lemma cexists_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X :
Robbert Krebbers
committed
Proof. unfold cexists. naive_solver. Qed.
Robbert Krebbers
committed
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
Robbert Krebbers
committed
Definition fresh_sig (X : C) : { x : A | x ∉ X } :=
exist (∉ X) (fresh X) (is_fresh X).
Global Instance fresh_proper: Proper ((≡) ==> (=)) fresh.
Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
Robbert Krebbers
committed
Fixpoint fresh_list (n : nat) (X : C) : list A :=
match n with
| 0 => []
| S n => let x := fresh X in x :: fresh_list n ({[ x ]} ∪ X)
end.
Robbert Krebbers
committed
Global Instance fresh_list_proper: Proper ((=) ==> (≡) ==> (=)) fresh_list.
Proof.
intros ? n ?. subst.
induction n; simpl; intros ?? E; f_equal.
* by rewrite E.
* apply IHn. by rewrite E.
Robbert Krebbers
committed
Qed.
Lemma fresh_list_length n X : length (fresh_list n X) = n.
Proof. revert X. induction n; simpl; auto. Qed.
Lemma fresh_list_is_fresh n X x : x ∈ fresh_list n X → x ∉ X.
revert X. induction n; intros X; simpl.
* by rewrite elem_of_nil.
* rewrite elem_of_cons. intros [?| Hin]; subst.
Robbert Krebbers
committed
+ apply IHn in Hin. solve_elem_of.
Qed.
Lemma fresh_list_nodup n X : NoDup (fresh_list n X).
Proof.
revert X.
induction n; simpl; constructor; auto.
intros Hin. apply fresh_list_is_fresh in Hin.
Robbert Krebbers
committed
solve_elem_of.
Definition option_collection `{Singleton A C} `{Empty C} (x : option A) : C :=
match x with
| None => ∅
| Some a => {[ a ]}
end.
(** * Properties of implementations of collections that form a monad *)
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
Section collection_monad.
Context `{CollectionMonad M}.
Global Instance collection_guard: MGuard M := λ P dec A x,
if dec then x else ∅.
Global Instance collection_fmap_proper {A B} (f : A → B) :
Proper ((≡) ==> (≡)) (fmap f).
Proof. intros X Y E. esolve_elem_of. Qed.
Global Instance collection_ret_proper {A} :
Proper ((=) ==> (≡)) (@mret M _ A).
Proof. intros X Y E. esolve_elem_of. Qed.
Global Instance collection_bind_proper {A B} (f : A → M B) :
Proper ((≡) ==> (≡)) (mbind f).
Proof. intros X Y E. esolve_elem_of. Qed.
Global Instance collection_join_proper {A} :
Proper ((≡) ==> (≡)) (@mjoin M _ A).
Proof. intros X Y E. esolve_elem_of. Qed.
Lemma collection_fmap_compose {A B C} (f : A → B) (g : B → C) X :
g ∘ f <$> X ≡ g <$> (f <$> X).
Proof. esolve_elem_of. Qed.
Lemma elem_of_fmap_1 {A B} (f : A → B) (X : M A) (y : B) :
y ∈ f <$> X → ∃ x, y = f x ∧ x ∈ X.
Proof. esolve_elem_of. Qed.
Lemma elem_of_fmap_2 {A B} (f : A → B) (X : M A) (x : A) :
x ∈ X → f x ∈ f <$> X.
Proof. esolve_elem_of. Qed.
Lemma elem_of_fmap_2_alt {A B} (f : A → B) (X : M A) (x : A) (y : B) :
x ∈ X → y = f x → y ∈ f <$> X.
Proof. esolve_elem_of. Qed.
Lemma elem_of_mapM {A B} (f : A → M B) l k :
l ∈ mapM f k ↔ Forall2 (λ x y, x ∈ f y) l k.
Proof.
split.
* revert l. induction k; esolve_elem_of.
* induction 1; esolve_elem_of.
Qed.
Lemma mapM_length {A B} (f : A → M B) l k :
l ∈ mapM f k → length l = length k.
Proof. revert l; induction k; esolve_elem_of. Qed.
Lemma elem_of_mapM_fmap {A B} (f : A → B) (g : B → M A) l k :
Forall (λ x, ∀ y, y ∈ g x → f y = x) l →
k ∈ mapM g l → fmap f k = l.
Proof.
intros Hl. revert k.
induction Hl; simpl; intros;
decompose_elem_of; simpl; f_equal; auto.
Qed.
Lemma elem_of_mapM_Forall {A B} (f : A → M B) (P : B → Prop) l k :
l ∈ mapM f k →
Forall (λ x, ∀ y, y ∈ f x → P y) k →
Forall P l.
Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
Lemma elem_of_mapM_Forall2_l {A B C} (f : A → M B)
(P : B → C → Prop) l1 l2 k :
l1 ∈ mapM f k →
Forall2 (λ x y, ∀ z, z ∈ f x → P z y) k l2 →
Forall2 P l1 l2.
Proof.
rewrite elem_of_mapM. intros Hl1. revert l2.
induction Hl1; inversion_clear 1; constructor; auto.
Qed.