Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
Iris
Commits
25c5e64d
Verified
Commit
25c5e64d
authored
5 years ago
by
Paolo G. Giarrusso
Browse files
Options
Downloads
Patches
Plain Diff
Prove sigT_equivI is admissible (fix #250)
parent
ffc56091
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!280
Prove sigT_equivI is admissible (fix #250)
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/algebra/ofe.v
+0
-2
0 additions, 2 deletions
theories/algebra/ofe.v
theories/bi/derived_laws_sbi.v
+19
-0
19 additions, 0 deletions
theories/bi/derived_laws_sbi.v
with
19 additions
and
2 deletions
theories/algebra/ofe.v
+
0
−
2
View file @
25c5e64d
...
...
@@ -1359,8 +1359,6 @@ Section sigT.
Global
Instance
existT_proper_2
a
:
Proper
((
≡
)
==>
(
≡
))
(
@
existT
A
P
a
)
.
Proof
.
apply
ne_proper
,
_
.
Qed
.
(* XXX Which do you prefer? *)
(* Proof. move => ?? Heq. apply (existT_proper eq_refl Heq). Qed. *)
Implicit
Types
(
c
:
chain
sigTO
)
.
...
...
This diff is collapsed.
Click to expand it.
theories/bi/derived_laws_sbi.v
+
19
−
0
View file @
25c5e64d
...
...
@@ -84,6 +84,25 @@ Qed.
Lemma
sig_equivI
{
A
:
ofeT
}
(
P
:
A
→
Prop
)
(
x
y
:
sig
P
)
:
`
x
≡
`
y
⊣⊢
x
≡
y
.
Proof
.
apply
(
anti_symm
_)
.
apply
sig_eq
.
apply
f_equiv
,
_
.
Qed
.
Section
sigT_equivI
.
Import
EqNotations
.
Lemma
sigT_equivI
{
A
:
Type
}
{
P
:
A
→
ofeT
}
(
x
y
:
sigT
P
)
:
x
≡
y
⊣⊢
∃
eq
:
projT1
x
=
projT1
y
,
rew
eq
in
projT2
x
≡
projT2
y
.
Proof
.
apply
(
anti_symm
_)
.
-
apply
(
internal_eq_rewrite'
x
y
(
λ
y
,
∃
eq
:
projT1
x
=
projT1
y
,
rew
eq
in
projT2
x
≡
projT2
y
))
%
I
;
[|
done
|
exact
:
(
exist_intro'
_
_
eq_refl
)
]
.
move
=>
n
[
a
pa
]
[
b
pb
]
[
/=
];
intros
->
=>
/=
Hab
.
apply
exist_ne
=>
?
.
by
rewrite
Hab
.
-
apply
exist_elim
.
move
:
x
y
=>
[
a
pa
]
[
b
pb
]
/=.
intros
->
;
simpl
.
apply
f_equiv
,
_
.
Qed
.
End
sigT_equivI
.
Lemma
discrete_fun_equivI
{
A
}
{
B
:
A
→
ofeT
}
(
f
g
:
discrete_fun
B
)
:
f
≡
g
⊣⊢
∀
x
,
f
x
≡
g
x
.
Proof
.
apply
(
anti_symm
_);
auto
using
fun_ext
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment