Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
c081e1b7
Commit
c081e1b7
authored
5 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
more generalization of lemmas and a few comments for [solve_ndisj]
parent
d1b91fbe
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!75
make solve_ndisj more powerful
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/namespaces.v
+12
-7
12 additions, 7 deletions
theories/namespaces.v
theories/sets.v
+6
-2
6 additions, 2 deletions
theories/sets.v
with
18 additions
and
9 deletions
theories/namespaces.v
+
12
−
7
View file @
c081e1b7
...
...
@@ -66,9 +66,6 @@ Section namespace.
Lemma
ndot_preserve_disjoint_r
N
E
x
:
E
##
↑
N
→
E
##
↑
N
.
@
x
.
Proof
.
intros
.
by
apply
symmetry
,
ndot_preserve_disjoint_l
.
Qed
.
Lemma
ndisj_difference_l
E
N1
N2
:
↑
N2
⊆
(
↑
N1
:
coPset
)
→
E
∖
↑
N1
##
↑
N2
.
Proof
.
set_solver
.
Qed
.
End
namespace
.
(* The hope is that registering these will suffice to solve most goals
...
...
@@ -77,17 +74,25 @@ of the forms:
- [↑N1 ⊆ E ∖ ↑N2 ∖ .. ∖ ↑Nn]
- [E1 ∖ ↑N1 ⊆ E2 ∖ ↑N2 ∖ .. ∖ ↑Nn] *)
Create
HintDb
ndisj
.
(* Rules for goals of the form [_ ⊆ _] *)
(* If-and-only-if rules. Well, not quite, but for the fragment we are
considering they are. *)
Hint
Resolve
(
subseteq_difference_r
(
A
:=
positive
)
(
C
:=
coPset
))
:
ndisj
.
Hint
Resolve
nclose_subseteq'
:
ndisj
.
Hint
Resolve
(
empty_subseteq
(
A
:=
positive
)
(
C
:=
coPset
))
:
ndisj
.
Hint
Resolve
(
union_least
(
A
:=
positive
)
(
C
:=
coPset
))
:
ndisj
.
(* Fallback, loses lots of information but lets other rules make progress. *)
Hint
Resolve
(
subseteq_difference_l
(
A
:=
positive
)
(
C
:=
coPset
))
|
100
:
ndisj
.
Hint
Resolve
nclose_subseteq'
|
100
:
ndisj
.
(* Rules for goals of the form [_ ## _] *)
(* The base rule that we want to ultimately get down to. *)
Hint
Extern
0
(_
##
_)
=>
apply
ndot_ne_disjoint
;
congruence
:
ndisj
.
Hint
Resolve
ndot_preserve_disjoint_l
ndot_preserve_disjoint_r
:
ndisj
.
Hint
Resolve
ndisj_difference_l
:
ndisj
.
Hint
Resolve
(
disjoint_difference_l
(
A
:=
positive
)
(
C
:=
coPset
))
|
100
:
ndisj
.
(* Fallback, loses lots of information but lets other rules make progress.
Tests show trying [disjoint_difference_l1] first gives better performance. *)
Hint
Resolve
(
disjoint_difference_l1
(
A
:=
positive
)
(
C
:=
coPset
))
|
50
:
ndisj
.
Hint
Resolve
(
disjoint_difference_l2
(
A
:=
positive
)
(
C
:=
coPset
))
|
100
:
ndisj
.
Hint
Resolve
ndot_preserve_disjoint_l
ndot_preserve_disjoint_r
|
100
:
ndisj
.
Ltac
solve_ndisj
:=
repeat
match
goal
with
...
...
This diff is collapsed.
Click to expand it.
theories/sets.v
+
6
−
2
View file @
c081e1b7
...
...
@@ -662,9 +662,13 @@ Section set.
(** Disjointness *)
Lemma
disjoint_intersection
X
Y
:
X
##
Y
↔
X
∩
Y
≡
∅.
Proof
.
set_solver
.
Qed
.
Lemma
disjoint_difference_l
X
Y1
Y
2
:
Y
1
##
X
→
Y
1
∖
Y
2
##
X
.
Lemma
disjoint_difference_l
1
X
1
X2
Y
:
Y
⊆
X
2
→
X
1
∖
X
2
##
Y
.
Proof
.
set_solver
.
Qed
.
Lemma
disjoint_difference_r
X
Y1
Y2
:
X
##
Y1
→
X
##
Y1
∖
Y2
.
Lemma
disjoint_difference_l2
X1
X2
Y
:
X1
##
Y
→
X1
∖
X2
##
Y
.
Proof
.
set_solver
.
Qed
.
Lemma
disjoint_difference_r1
X
Y1
Y2
:
X
⊆
Y2
→
X
##
Y1
∖
Y2
.
Proof
.
set_solver
.
Qed
.
Lemma
disjoint_difference_r2
X
Y1
Y2
:
X
##
Y1
→
X
##
Y1
∖
Y2
.
Proof
.
set_solver
.
Qed
.
Section
leibniz
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment