Skip to content
Snippets Groups Projects

add inverses of bool_decide_{true,false}

Merged Ralf Jung requested to merge ralf/bool_decide into master
All threads resolved!
1 file
+ 2
6
Compare changes
  • Side-by-side
  • Inline
+ 2
6
@@ -121,13 +121,9 @@ Lemma bool_decide_iff (P Q : Prop) `{Decision P, Decision Q} :
Proof. repeat case_bool_decide; tauto. Qed.
Lemma bool_decide_true_2 P `{!Decision P}: bool_decide P = true P.
Proof. intros Heq. eapply bool_decide_unpack. rewrite Heq. exact I. Qed.
Proof. case_bool_decide; auto || discriminate. Qed.
Lemma bool_decide_false_2 P `{!Decision P}: bool_decide P = false ¬P.
Proof.
intros Heq HP. assert (HP': bool_decide P).
{ apply bool_decide_spec. assumption. }
case_bool_decide; auto || discriminate.
Qed.
Proof. case_bool_decide; auto || discriminate. Qed.
(** * Decidable Sigma types *)
(** Leibniz equality on Sigma types requires the equipped proofs to be
Loading