Newer
Older
From iris.proofmode Require Import coq_tactics intro_patterns spec_patterns.
From iris.algebra Require Export upred.
From iris.proofmode Require Export classes notation.
From iris.proofmode Require Import class_instances.
From iris.prelude Require Import stringmap hlist.
env_lookup env_fold env_lookup_delete env_delete env_app
env_replace env_split_go env_split
decide (* operational classes *)
sumbool_rec sumbool_rect (* sumbool *)
bool_eq_dec bool_rec bool_rect bool_dec eqb andb (* bool *)
assci_eq_dec ascii_to_digits Ascii.ascii_dec Ascii.ascii_rec Ascii.ascii_rect
string_eq_dec string_rec string_rect (* strings *)
env_persistent env_spatial env_spatial_is_nil
envs_simple_replace envs_replace envs_split envs_clear_spatial].
Ltac env_cbv :=
match goal with |- ?u => let v := eval env_cbv in u in change v end.
(* Tactic Notation tactics cannot return terms *)
Ltac iFresh' H :=
(* [vm_compute fails] if any of the hypotheses in [Δ] contain evars, so
first use [cbv] to compute the domain of [Δ] *)
let Hs := eval cbv in (envs_dom Δ) in
eval vm_compute in (fresh_string_of_set H (of_list Hs))
| _ => H
Ltac iFresh := iFresh' "~".
Tactic Notation "iTypeOf" constr(H) tactic(tac):=
let Δ := match goal with |- of_envs ?Δ ⊢ _ => Δ end in
match eval env_cbv in (envs_lookup H Δ) with
| Some (?p,?P) => tac p P
end.
Robbert Krebbers
committed
Ltac iMatchGoal tac :=
match goal with
| |- context[ environments.Esnoc _ ?x ?P ] => tac x P
end.
(** * Start a proof *)
Tactic Notation "iProof" :=
lazymatch goal with
| |- of_envs _ ⊢ _ => fail "iProof: already in Iris proofmode"
| |- True ⊢ _ => apply tac_adequate
| |- _ ⊢ _ => apply uPred.wand_entails, tac_adequate
end.
(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *)
[env_cbv; reflexivity || fail "iRename:" H1 "not found"
|env_cbv; reflexivity || fail "iRename:" H2 "not fresh"|].
Tactic Notation "iClear" constr(Hs) :=
let rec go Hs :=
match Hs with
| [] => idtac
| "★" :: ?Hs => eapply tac_clear_spatial; [env_cbv; reflexivity|go Hs]
| ?H :: ?Hs =>
eapply tac_clear with _ H _ _; (* (i:=H) *)
[env_cbv; reflexivity || fail "iClear:" H "not found"|go Hs]
end in
let Hs := words Hs in go Hs.
(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
eapply tac_assumption with H _ _; (* (i:=H) *)
[env_cbv; reflexivity || fail "iExact:" H "not found"
|let P := match goal with |- FromAssumption _ ?P _ => P end in
apply _ || fail "iExact:" H ":" P "does not match goal"].
Tactic Notation "iAssumptionCore" :=
let rec find Γ i P :=
match Γ with
| Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j| find Γ i P]
end in
match goal with
| |- envs_lookup ?i (Envs ?Γp ?Γs) = Some (_, ?P) =>
first [is_evar i; fail 1 | env_cbv; reflexivity]
| |- envs_lookup ?i (Envs ?Γp ?Γs) = Some (_, ?P) =>
is_evar i; first [find Γp i P | find Γs i P]; env_cbv; reflexivity
end.
let Hass := fresh in
let rec find p Γ Q :=
match Γ with
| Esnoc ?Γ ?j ?P => first
[pose proof (_ : FromAssumption p P Q) as Hass;
apply (tac_assumption _ j p P); [env_cbv; reflexivity|apply Hass]
|find p Γ Q]
end in
match goal with
| |- of_envs (Envs ?Γp ?Γs) ⊢ ?Q =>
first [find true Γp Q | find false Γs Q
|fail "iAssumption:" Q "not found"]
end.
(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.
(** * Making hypotheses persistent or pure *)
Local Tactic Notation "iPersistent" constr(H) :=
eapply tac_persistent with _ H _ _ _; (* (i:=H) *)
[env_cbv; reflexivity || fail "iPersistent:" H "not found"
|let Q := match goal with |- IntoPersistentP ?Q _ => Q end in
apply _ || fail "iPersistent:" Q "not persistent"
Local Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
eapply tac_pure with _ H _ _ _; (* (i:=H1) *)
[env_cbv; reflexivity || fail "iPure:" H "not found"
|let P := match goal with |- IntoPure ?P _ => P end in
apply _ || fail "iPure:" P "not pure"
Tactic Notation "iPureIntro" :=
eapply tac_pure_intro;
[let P := match goal with |- FromPure ?P _ => P end in
apply _ || fail "iPureIntro:" P "not pure"|].
Record iTrm {X As} :=
ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : string }.
Arguments ITrm {_ _} _ _ _.
Notation "( H $! x1 .. xn )" :=
(ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 9).
Notation "( H $! x1 .. xn 'with' pat )" :=
(ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 9).
Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0).
Local Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) :=
match xs with
| hnil => idtac
| _ =>
eapply tac_forall_specialize with _ H _ _ _ xs; (* (i:=H) (a:=x) *)
[env_cbv; reflexivity || fail 1 "iSpecialize:" H "not found"
|let P := match goal with |- ForallSpecialize _ ?P _ => P end in
apply _ || fail 1 "iSpecialize:" P "not a forall of the right arity or type"
Local Tactic Notation "iSpecializePat" constr(H) constr(pat) :=
let P := match goal with |- IntoWand ?P _ _ => P end in
apply _ || fail "iSpecialize:" P "not an implication/wand" in
let rec go H1 pats :=
lazymatch pats with
| [] => idtac
| SForall :: ?pats => try (iSpecializeArgs H1 (hcons _ _)); go H1 pats
| SName ?H2 :: ?pats =>
eapply tac_specialize with _ _ H2 _ H1 _ _ _ _; (* (j:=H1) (i:=H2) *)
[env_cbv; reflexivity || fail "iSpecialize:" H2 "not found"
|env_cbv; reflexivity || fail "iSpecialize:" H1 "not found"
|let P := match goal with |- IntoWand ?P ?Q _ => P end in
let Q := match goal with |- IntoWand ?P ?Q _ => Q end in
apply _ || fail "iSpecialize: cannot instantiate" P "with" Q
| SGoalPersistent :: ?pats =>
eapply tac_specialize_assert_persistent with _ _ H1 _ _ _ _;
[env_cbv; reflexivity || fail "iSpecialize:" H1 "not found"
|solve_to_wand H1
|let Q := match goal with |- PersistentP ?Q => Q end in
apply _ || fail "iSpecialize:" Q "not persistent"
|env_cbv; reflexivity
|(*goal*)
|go H1 pats]
| SGoalPure :: ?pats =>
eapply tac_specialize_assert_pure with _ H1 _ _ _ _ _;
[env_cbv; reflexivity || fail "iSpecialize:" H1 "not found"
|solve_to_wand H1
|let Q := match goal with |- FromPure ?Q _ => Q end in
apply _ || fail "iSpecialize:" Q "not pure"
|env_cbv; reflexivity
|(*goal*)
|go H1 pats]
| SGoal ?k ?lr ?Hs :: ?pats =>
eapply tac_specialize_assert with _ _ _ H1 _ lr Hs _ _ _ _;
[env_cbv; reflexivity || fail "iSpecialize:" H1 "not found"
|solve_to_wand H1
|match k with
| GoalStd => apply into_assert_default
Robbert Krebbers
committed
| GoalVs => apply _ || fail "iSpecialize: cannot generate view shifted goal"
|env_cbv; reflexivity || fail "iSpecialize:" Hs "not found"
|(*goal*)
end in let pats := spec_pat.parse pat in go H pats.
(* p = whether the conclusion of the specialized term is persistent. It can
either be a Boolean or an introduction pattern, which will be coerced in true
when it only contains `#` or `%` patterns at the top-level. *)
Tactic Notation "iSpecializeCore" open_constr(t) "as" constr(p) tactic(tac) :=
let p :=
lazymatch type of p with
| intro_pat => eval cbv in (intro_pat_persistent p)
| string =>
let pat := intro_pat.parse_one p in
eval cbv in (intro_pat_persistent pat)
| _ => p
end in
lazymatch t with
| ITrm ?H ?xs ?pat =>
lazymatch p with
| true =>
eapply tac_specialize_persistent_helper with _ H _ _ _;
[env_cbv; reflexivity || fail "iSpecialize:" H "not found"
|iSpecializeArgs H xs; iSpecializePat H pat; last (iExact H)
|let Q := match goal with |- PersistentP ?Q => Q end in
apply _ || fail "iSpecialize:" Q "not persistent"
|env_cbv; reflexivity|tac H]
| false => iSpecializeArgs H xs; iSpecializePat H pat; last (tac H)
end
Tactic Notation "iSpecialize" open_constr(t) :=
iSpecializeCore t as false (fun _ => idtac).
Tactic Notation "iSpecialize" open_constr(t) "#" :=
iSpecializeCore t as true (fun _ => idtac).
(* The tactic [iIntoEntails] tactic solves a goal [True ⊢ Q]. The arguments [t]
is a Coq term whose type is of the following shape:
- [∀ (x_1 : A_1) .. (x_n : A_n), True ⊢ Q]
- [∀ (x_1 : A_1) .. (x_n : A_n), P1 ⊢ P2], in which case [Q] becomes [P1 -★ P2]
- [∀ (x_1 : A_1) .. (x_n : A_n), P1 ⊣⊢ P2], in which case [Q] becomes [P1 ↔ P2]
The tactic instantiates each dependent argument [x_i] with an evar and generates
a goal [P] for non-dependent arguments [x_i : P]. *)
Tactic Notation "iIntoEntails" open_constr(t) :=
let rec go t :=
let tT := type of t in
lazymatch eval hnf in tT with
| True ⊢ _ => apply t
| _ ⊢ _ => apply (uPred.entails_wand _ _ t)
(* need to use the unfolded version of [⊣⊢] due to the hnf *)
| uPred_equiv' _ _ => apply (uPred.equiv_iff _ _ t)
| ?P → ?Q => let H := fresh in assert P as H; [|go uconstr:(t H); clear H]
| ∀ _ : ?T, _ =>
(* Put [T] inside an [id] to avoid TC inference from being invoked. *)
(* This is a workarround for Coq bug #4969. *)
let e := fresh in evar (e:id T);
let e' := eval unfold e in e in clear e; go (t e')
end
in go t.
Tactic Notation "iPoseProofCore" open_constr(lem) "as" constr(p) tactic(tac) :=
let pose_trm t tac :=
let Htmp := iFresh in
lazymatch type of t with
| string =>
eapply tac_pose_proof_hyp with _ _ t _ Htmp _;
[env_cbv; reflexivity || fail "iPoseProof:" t "not found"
|env_cbv; reflexivity || fail "iPoseProof:" Htmp "not fresh"
|tac Htmp]
| _ =>
eapply tac_pose_proof with _ Htmp _; (* (j:=H) *)
[iIntoEntails t
|env_cbv; reflexivity || fail "iPoseProof:" Htmp "not fresh"
|tac Htmp]
end;
try (apply _) (* solve TC constraints. It is essential that this happens
after the continuation [tac] has been called. *)
in lazymatch lem with
| ITrm ?t ?xs ?pat =>
pose_trm t ltac:(fun Htmp => iSpecializeCore (ITrm Htmp xs pat) as p tac)
Tactic Notation "iPoseProof" open_constr(lem) "as" constr(H) :=
iPoseProofCore lem as false (fun Htmp => iRename Htmp into H).
Tactic Notation "iApply" open_constr(lem) :=
let finish H := first
[iExact H
|eapply tac_apply with _ H _ _ _;
[env_cbv; reflexivity || fail 1 "iApply:" H "not found"
|let P := match goal with |- IntoWand ?P _ _ => P end in
apply _ || fail 1 "iApply: cannot apply" P
|lazy beta (* reduce betas created by instantiation *)]] in
lazymatch lem with
| ITrm ?t ?xs ?pat =>
iPoseProofCore t as false (fun Htmp =>
iSpecializeArgs Htmp xs;
try (iSpecializeArgs Htmp (hcons _ _));
iSpecializePat Htmp pat; last finish Htmp)
iPoseProofCore lem as false (fun Htmp =>
try (iSpecializeArgs Htmp (hcons _ _));
Local Tactic Notation "iForallRevert" ident(x) :=
let A := type of x in
lazymatch type of A with
| Prop => revert x; apply tac_pure_revert
end || fail "iRevert: cannot revert" x.
Tactic Notation "iRevert" constr(Hs) :=
let rec go H2s :=
match H2s with
| [] => idtac
| "★" :: ?H2s => go H2s; eapply tac_revert_spatial; env_cbv
| ?H2 :: ?H2s =>
go H2s;
eapply tac_revert with _ H2 _ _; (* (i:=H2) *)
[env_cbv; reflexivity || fail "iRevert:" H2 "not found"
|env_cbv]
end in
Tactic Notation "iRevert" "(" ident(x1) ")" :=
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" :=
iForallRevert x2; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" :=
iForallRevert x3; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
iForallRevert x4; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ")" :=
iForallRevert x5; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ")" :=
iForallRevert x6; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ")" :=
iForallRevert x7; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ident(x8) ")" :=
iForallRevert x8; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ")" constr(Hs) :=
iRevert Hs; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" constr(Hs) :=
iRevert Hs; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs) :=
iRevert Hs; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
iRevert Hs; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ")" constr(Hs) :=
iRevert Hs; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ")" constr(Hs) :=
iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ")" constr(Hs) :=
iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) :=
iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).
(** * Disjunction *)
Tactic Notation "iLeft" :=
eapply tac_or_l;
[let P := match goal with |- FromOr ?P _ _ => P end in
apply _ || fail "iLeft:" P "not a disjunction"|].
Tactic Notation "iRight" :=
eapply tac_or_r;
[let P := match goal with |- FromOr ?P _ _ => P end in
apply _ || fail "iRight:" P "not a disjunction"|].
Local Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) :=
eapply tac_or_destruct with _ _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
[env_cbv; reflexivity || fail "iOrDestruct:" H "not found"
|let P := match goal with |- IntoOr ?P _ _ => P end in
Robbert Krebbers
committed
apply _ || fail "iOrDestruct: cannot destruct" P
|env_cbv; reflexivity || fail "iOrDestruct:" H1 "not fresh"
|env_cbv; reflexivity || fail "iOrDestruct:" H2 "not fresh"| |].
(** * Conjunction and separating conjunction *)
Tactic Notation "iSplit" :=
lazymatch goal with
| |- _ ⊢ _ =>
eapply tac_and_split;
[let P := match goal with |- FromAnd ?P _ _ => P end in
apply _ || fail "iSplit:" P "not a conjunction"| |]
| |- _ ⊣⊢ _ => apply (anti_symm (⊢))
end.
Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in
eapply tac_sep_split with _ _ false Hs _ _; (* (js:=Hs) *)
[let P := match goal with |- FromSep ?P _ _ => P end in
apply _ || fail "iSplitL:" P "not a separating conjunction"
|env_cbv; reflexivity || fail "iSplitL: hypotheses" Hs
"not found in the spatial context"| |].
Tactic Notation "iSplitR" constr(Hs) :=
let Hs := words Hs in
eapply tac_sep_split with _ _ true Hs _ _; (* (js:=Hs) *)
[let P := match goal with |- FromSep ?P _ _ => P end in
apply _ || fail "iSplitR:" P "not a separating conjunction"
|env_cbv; reflexivity || fail "iSplitR: hypotheses" Hs
"not found in the spatial context"| |].
Tactic Notation "iSplitL" := iSplitR "".
Tactic Notation "iSplitR" := iSplitL "".
Robbert Krebbers
committed
Local Tactic Notation "iAndDestruct" constr(H) "as" constr(H1) constr(H2) :=
eapply tac_and_destruct with _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
[env_cbv; reflexivity || fail "iAndDestruct:" H "not found"
|let P := match goal with |- IntoAnd _ ?P _ _ => P end in
apply _ || fail "iAndDestruct: cannot destruct" P
|env_cbv; reflexivity || fail "iAndDestruct:" H1 "or" H2 " not fresh"|].
Local Tactic Notation "iAndDestructChoice" constr(H) "as" constr(lr) constr(H') :=
eapply tac_and_destruct_choice with _ H _ lr H' _ _ _;
[env_cbv; reflexivity || fail "iAndDestruct:" H "not found"
|let P := match goal with |- IntoAnd _ ?P _ _ => P end in
apply _ || fail "iAndDestruct: cannot destruct" P
|env_cbv; reflexivity || fail "iAndDestruct:" H' " not fresh"|].
Tactic Notation "iCombine" constr(H1) constr(H2) "as" constr(H) :=
eapply tac_combine with _ _ _ H1 _ _ H2 _ _ H _;
[env_cbv; reflexivity || fail "iCombine:" H1 "not found"
|env_cbv; reflexivity || fail "iCombine:" H2 "not found"
|let P1 := match goal with |- FromSep _ ?P1 _ => P1 end in
let P2 := match goal with |- FromSep _ _ ?P2 => P2 end in
apply _ || fail "iCombine: cannot combine" P1 "and" P2
|env_cbv; reflexivity || fail "iCombine:" H "not fresh"|].
Local Ltac iFramePure t :=
let φ := type of t in
eapply (tac_frame_pure _ _ _ _ t);
[apply _ || fail "iFrame: cannot frame" φ|].
Local Ltac iFrameHyp H :=
eapply tac_frame with _ H _ _ _;
[env_cbv; reflexivity || fail "iFrame:" H "not found"
|let R := match goal with |- Frame ?R _ _ => R end in
apply _ || fail "iFrame: cannot frame" R
|lazy iota beta].
Local Ltac iFrameAnyPure :=
repeat match goal with H : _ |- _ => iFramePure H end.
Local Ltac iFrameAnyPersistent :=
let rec go Hs :=
match Hs with [] => idtac | ?H :: ?Hs => repeat iFrameHyp H; go Hs end in
match goal with
| |- of_envs ?Δ ⊢ _ =>
let Hs := eval cbv in (env_dom (env_persistent Δ)) in go Hs
end.
let rec go Hs :=
match Hs with [] => idtac | ?H :: ?Hs => try iFrameHyp H; go Hs end in
match goal with
| |- of_envs ?Δ ⊢ _ =>
let Hs := eval cbv in (env_dom (env_spatial Δ)) in go Hs
end.
Tactic Notation "iFrame" := iFrameAnySpatial.
Tactic Notation "iFrame" "(" constr(t1) ")" :=
iFramePure t1.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" :=
iFramePure t1; iFrame ( t2 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" :=
iFramePure t1; iFrame ( t2 t3 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")" :=
iFramePure t1; iFrame ( t2 t3 t4 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
constr(t5) ")" :=
iFramePure t1; iFrame ( t2 t3 t4 t5 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
constr(t5) constr(t6) ")" :=
iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
constr(t5) constr(t6) constr(t7) ")" :=
iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
constr(t5) constr(t6) constr(t7) constr(t8)")" :=
iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ).
Tactic Notation "iFrame" constr(Hs) :=
let rec go Hs :=
match Hs with
| [] => idtac
| "%" :: ?Hs => iFrameAnyPure; go Hs
| "#" :: ?Hs => iFrameAnyPersistent; go Hs
| "★" :: ?Hs => iFrameAnySpatial; go Hs
| ?H :: ?Hs => iFrameHyp H; go Hs
end
in let Hs := words Hs in go Hs.
Tactic Notation "iFrame" "(" constr(t1) ")" constr(Hs) :=
iFramePure t1; iFrame Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" constr(Hs) :=
iFramePure t1; iFrame ( t2 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" constr(Hs) :=
iFramePure t1; iFrame ( t2 t3 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")"
constr(Hs) :=
iFramePure t1; iFrame ( t2 t3 t4 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
constr(t5) ")" constr(Hs) :=
iFramePure t1; iFrame ( t2 t3 t4 t5 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
constr(t5) constr(t6) ")" constr(Hs) :=
iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
constr(t5) constr(t6) constr(t7) ")" constr(Hs) :=
iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
constr(t5) constr(t6) constr(t7) constr(t8)")" constr(Hs) :=
iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ) Hs.
Tactic Notation "iExists" uconstr(x1) :=
eapply tac_exist;
[let P := match goal with |- FromExist ?P _ => P end in
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) :=
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) :=
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
uconstr(x4) :=
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
uconstr(x4) "," uconstr(x5) :=
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
uconstr(x4) "," uconstr(x5) "," uconstr(x6) :=
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) :=
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) ","
uconstr(x8) :=
Local Tactic Notation "iExistDestruct" constr(H)
"as" simple_intropattern(x) constr(Hx) :=
eapply tac_exist_destruct with H _ Hx _ _; (* (i:=H) (j:=Hx) *)
[env_cbv; reflexivity || fail "iExistDestruct:" H "not found"
|let P := match goal with |- IntoExist ?P _ => P end in
Robbert Krebbers
committed
apply _ || fail "iExistDestruct: cannot destruct" P|];
let y := fresh in
intros y; eexists; split;
[env_cbv; reflexivity || fail "iExistDestruct:" Hx "not fresh"
|revert y; intros x].
(** * Always *)
Tactic Notation "iAlways":=
apply tac_always_intro;
[reflexivity || fail "iAlways: spatial context non-empty"|].
(** * Later *)
Tactic Notation "iNext":=
eapply tac_next;
[apply _
|let P := match goal with |- FromLater ?P _ => P end in
apply _ || fail "iNext:" P "does not contain laters"|].
Tactic Notation "iTimeless" constr(H) :=
eapply tac_timeless with _ H _ _ _;
[let Q := match goal with |- IsExceptLast ?Q => Q end in
Robbert Krebbers
committed
apply _ || fail "iTimeless: cannot remove later when goal is" Q
|env_cbv; reflexivity || fail "iTimeless:" H "not found"
|let P := match goal with |- IntoExceptLast ?P _ => P end in
apply _ || fail "iTimeless: cannot turn" P "into ◇"
|env_cbv; reflexivity|].
(** * View shifts *)
Tactic Notation "iVsIntro" :=
eapply tac_vs_intro;
[let P := match goal with |- FromVs ?P _ => P end in
apply _ || fail "iVsIntro:" P "not a view shift"|].
Tactic Notation "iVsCore" constr(H) :=
eapply tac_vs_elim with _ H _ _ _ _;
[env_cbv; reflexivity || fail "iVs:" H "not found"
|let P := match goal with |- ElimVs ?P _ _ _ => P end in
let Q := match goal with |- ElimVs _ _ ?Q _ => Q end in
apply _ || fail "iVs: cannot run" P "in" Q
"because the goal or hypothesis is not a view shift"
Local Tactic Notation "iDestructHyp" constr(H) "as" constr(pat) :=
let rec go Hz pat :=
lazymatch pat with
| IAnom => idtac
| IDrop => iClear Hz
| IList [[]] => iExFalso; iExact Hz
Robbert Krebbers
committed
| IList [[?pat1; IDrop]] => iAndDestructChoice Hz as true Hz; go Hz pat1
| IList [[IDrop; ?pat2]] => iAndDestructChoice Hz as false Hz; go Hz pat2
Robbert Krebbers
committed
let Hy := iFresh in iAndDestruct Hz as Hz Hy; go Hz pat1; go Hy pat2
| IList [[?pat1];[?pat2]] => iOrDestruct Hz as Hz Hz; [go Hz pat1|go Hz pat2]
| IPureElim => iPure Hz as ?
| IAlwaysElim ?pat => iPersistent Hz; go Hz pat
| ILaterElim ?pat => iTimeless Hz; go Hz pat
| IVsElim ?pat => iVsCore Hz; go Hz pat
| _ => fail "iDestruct:" pat "invalid"
end
in let pat := intro_pat.parse_one pat in go H pat.
Local Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1) ")"
constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as @ pat.
Local Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) ")" constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as ( x2 ) pat.
Local Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) ")" constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 ) pat.
Local Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")"
iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 ) pat.
Local Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) ")" constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 ) pat.
Local Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) ")" constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 x6 ) pat.
Local Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) ")"
iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 x6 x7 ) pat.
Local Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
simple_intropattern(x8) ")" constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 x6 x7 x8 ) pat.
Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" := first
[ (* (∀ _, _) *) apply tac_forall_intro; intros x
| (* (?P → _) *) eapply tac_impl_intro_pure;
[let P := match goal with |- IntoPure ?P _ => P end in
apply _ || fail "iIntro:" P "not pure"
|intros x]
| (* (?P -★ _) *) eapply tac_wand_intro_pure;
[let P := match goal with |- IntoPure ?P _ => P end in
apply _ || fail "iIntro:" P "not pure"
|intros x]
|intros x].
Local Tactic Notation "iIntro" constr(H) := first
[ (* (?Q → _) *)
eapply tac_impl_intro with _ H; (* (i:=H) *)
[reflexivity || fail 1 "iIntro: introducing" H
"into non-empty spatial context"
|env_cbv; reflexivity || fail "iIntro:" H "not fresh"|]
| (* (_ -★ _) *)
eapply tac_wand_intro with _ H; (* (i:=H) *)
[env_cbv; reflexivity || fail 1 "iIntro:" H "not fresh"|]
| fail 1 "iIntro: nothing to introduce" ].
Local Tactic Notation "iIntro" "#" constr(H) := first
[ (* (?P → _) *)
eapply tac_impl_intro_persistent with _ H _; (* (i:=H) *)
[let P := match goal with |- IntoPersistentP ?P _ => P end in
apply _ || fail 1 "iIntro: " P " not persistent"
|env_cbv; reflexivity || fail 1 "iIntro:" H "not fresh"|]
| (* (?P -★ _) *)
eapply tac_wand_intro_persistent with _ H _; (* (i:=H) *)
[let P := match goal with |- IntoPersistentP ?P _ => P end in
apply _ || fail 1 "iIntro: " P " not persistent"
|env_cbv; reflexivity || fail 1 "iIntro:" H "not fresh"|]
| fail 1 "iIntro: nothing to introduce" ].
Local Tactic Notation "iIntroForall" :=
lazymatch goal with
| |- ∀ _, ?P => fail
| |- ∀ _, _ => intro
| |- _ ⊢ (∀ x : _, _) => iIntro (x)
end.
Local Tactic Notation "iIntro" :=
lazymatch goal with
| |- _ → ?P => intro
| |- _ ⊢ (_ -★ _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
| |- _ ⊢ (_ → _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
Tactic Notation "iIntros" constr(pat) :=
let rec go pats :=
lazymatch pats with
| [] => idtac
| IPureElim :: ?pats => iIntro (?); go pats
| IAlwaysElim IAnom :: ?pats => let H := iFresh in iIntro #H; go pats
| IAnom :: ?pats => let H := iFresh in iIntro H; go pats
| IAlwaysElim (IName ?H) :: ?pats => iIntro #H; go pats
| IName ?H :: ?pats => iIntro H; go pats
| IPureIntro :: ?pats => iPureIntro; go pats
| IAlwaysIntro :: ?pats => iAlways; go pats
| ILaterIntro :: ?pats => iNext; go pats
| IVsIntro :: ?pats => iVsIntro; go pats
| ISimpl :: ?pats => simpl; go pats
| IForall :: ?pats => repeat iIntroForall; go pats
| IAll :: ?pats => repeat (iIntroForall || iIntro); go pats
Robbert Krebbers
committed
| IClear ?cpats :: ?pats =>
let rec clr cpats :=
match cpats with
| [] => go pats
| (false,?H) :: ?cpats => iClear H; clr cpats
| (true,?H) :: ?cpats => iFrame H; clr cpats
end in clr cpats
let H := iFresh in iIntro #H; iDestructHyp H as pat; go pats
| ?pat :: ?pats =>
let H := iFresh in iIntro H; iDestructHyp H as pat; go pats
end
in let pats := intro_pat.parse pat in try iProof; go pats.
Tactic Notation "iIntros" := iIntros [IAll].
Tactic Notation "iIntros" "(" simple_intropattern(x1) ")" :=
try iProof; iIntro ( x1 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1)
simple_intropattern(x2) ")" :=
iIntros ( x1 ); iIntro ( x2 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) ")" :=
iIntros ( x1 x2 ); iIntro ( x3 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) ")" :=
iIntros ( x1 x2 x3 ); iIntro ( x4 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) ")" :=
iIntros ( x1 x2 x3 x4 ); iIntro ( x5 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) ")" :=
iIntros ( x1 x2 x3 x4 x5 ); iIntro ( x6 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) simple_intropattern(x7) ")" :=
iIntros ( x1 x2 x3 x4 x5 x6 ); iIntro ( x7 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8) ")" :=
iIntros ( x1 x2 x3 x4 x5 x6 x7 ); iIntro ( x8 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) ")" constr(p) :=
iIntros ( x1 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
")" constr(p) :=
iIntros ( x1 x2 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) ")" constr(p) :=
iIntros ( x1 x2 x3 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) ")" constr(p) :=
iIntros ( x1 x2 x3 x4 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
")" constr(p) :=
iIntros ( x1 x2 x3 x4 x5 ); iIntros p.
Tactic Notation "iIntros" "("simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) ")" constr(p) :=
iIntros ( x1 x2 x3 x4 x5 x6 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) simple_intropattern(x7) ")" constr(p) :=
iIntros ( x1 x2 x3 x4 x5 x6 x7 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
")" constr(p) :=
iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 ); iIntros p.
Tactic Notation "iRevertIntros" "with" tactic(tac) :=
match goal with
| |- of_envs ?Δ ⊢ _ =>
let Hs := eval cbv in (reverse (env_dom (env_spatial Δ))) in
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
iRevert ["★"]; tac; iIntros Hs
end.
Tactic Notation "iRevertIntros" "(" ident(x1) ")" "with" tactic(tac):=
iRevertIntros with (iRevert (x1); tac; iIntros (x1)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ")" "with" tactic(tac):=
iRevertIntros with (iRevert (x1 x2); tac; iIntros (x1 x2)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ")"
"with" tactic(tac):=
iRevertIntros with (iRevert (x1 x2 x3); tac; iIntros (x1 x2 x3)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
"with" tactic(tac):=
iRevertIntros with (iRevert (x1 x2 x3 x4); tac; iIntros (x1 x2 x3 x4)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ")" "with" tactic(tac):=
iRevertIntros with (iRevert (x1 x2 x3 x4 x5); tac; iIntros (x1 x2 x3 x4 x5)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ")" "with" tactic(tac):=
iRevertIntros with (iRevert (x1 x2 x3 x4 x5 x6);
tac; iIntros (x1 x2 x3 x4 x5 x6)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ")" "with" tactic(tac):=
iRevertIntros with (iRevert (x1 x2 x3 x4 x5 x6 x7);
tac; iIntros (x1 x2 x3 x4 x5 x6 x7)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ident(x8) ")" "with" tactic(tac):=
iRevertIntros with (iRevert (x1 x2 x3 x4 x5 x6 x7 x8);
tac; iIntros (x1 x2 x3 x4 x5 x6 x7 x8)).
Tactic Notation "iDestructCore" open_constr(lem) "as" constr(p) tactic(tac) :=
let intro_destruct n :=
let rec go n' :=
lazymatch n' with
| 0 => fail "iDestruct: cannot introduce" n "hypotheses"
| 1 => repeat iIntroForall; let H := iFresh in iIntro H; tac H
| S ?n' => repeat iIntroForall; let H := iFresh in iIntro H; go n'
end in intros; try iProof; go n in
lazymatch type of lem with
| nat => intro_destruct lem
| Z => (* to make it work in Z_scope. We should just be able to bind
tactic notation arguments to notation scopes. *)
let n := eval compute in (Z.to_nat lem) in intro_destruct n
| string => tac lem
| iTrm =>
(* only copy the hypothesis when universal quantifiers are instantiated *)
| @iTrm string ?H _ hnil ?pat => iSpecializeCore lem as p tac
| _ => iPoseProofCore lem as p tac
| _ => iPoseProofCore lem as p tac
Tactic Notation "iDestruct" open_constr(lem) "as" constr(pat) :=
iDestructCore lem as pat (fun H => iDestructHyp H as pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1) ")"
iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) ")" constr(pat) :=
iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) ")" constr(pat) :=
iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")"
iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 x4 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) ")" constr(pat) :=
iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) ")" constr(pat) :=
iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) ")"
iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
simple_intropattern(x8) ")" constr(pat) :=
iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 x8 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "%" simple_intropattern(pat) :=
iDestructCore lem as true (fun H => iPure H as pat).
(** * Induction *)
Tactic Notation "iInductionCore" constr(x)
"as" simple_intropattern(pat) constr(IH) :=
let rec fix_ihs :=
lazymatch goal with
| H : coq_tactics.of_envs _ ⊢ _ |- _ =>
eapply tac_revert_ih;
[env_cbv; reflexivity
|apply H|];
clear H; fix_ihs;
let IH' := iFresh' IH in iIntros [IAlwaysElim (IName IH')]
| _ => idtac
end in
induction x as pat; fix_ihs.
Tactic Notation "iInduction" constr(x)
"as" simple_intropattern(pat) constr(IH) :=
iRevertIntros with (iInductionCore x as pat IH).
(** * Löb Induction *)
Tactic Notation "iLöbCore" "as" constr (IH) :=
eapply tac_löb with _ IH;
[reflexivity
|env_cbv; reflexivity || fail "iLöb:" IH "not fresh"|].
Tactic Notation "iLöb" "as" constr (IH) :=
iRevertIntros with (iLöbCore as IH).
Tactic Notation "iLöb" "(" ident(x1) ")" "as" constr (IH) :=
iRevertIntros(x1) with (iLöbCore as IH).
Tactic Notation "iLöb" "(" ident(x1) ident(x2) ")" "as" constr (IH) :=
iRevertIntros(x1 x2) with (iLöbCore as IH).
Tactic Notation "iLöb" "(" ident(x1) ident(x2) ident(x3) ")" "as" constr (IH) :=
iRevertIntros(x1 x2 x3) with (iLöbCore as IH).
Tactic Notation "iLöb" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" "as"
constr (IH):=
iRevertIntros(x1 x2 x3 x4) with (iLöbCore as IH).
Tactic Notation "iLöb" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ")" "as" constr (IH) :=
iRevertIntros(x1 x2 x3 x4 x5) with (iLöbCore as IH).
Tactic Notation "iLöb" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ")" "as" constr (IH) :=
iRevertIntros(x1 x2 x3 x4 x5 x6) with (iLöbCore as IH).
Tactic Notation "iLöb" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ")" "as" constr (IH) :=
iRevertIntros(x1 x2 x3 x4 x5 x6 x7) with (iLöbCore as IH).
Tactic Notation "iLöb" "(" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ident(x8) ")" "as" constr (IH) :=
iRevertIntros(x1 x2 x3 x4 x5 x6 x7 x8) with (iLöbCore as IH).
Tactic Notation "iAssertCore" open_constr(Q) "with" constr(Hs) "as" tactic(tac) :=
let Hs := spec_pat.parse Hs in
eapply tac_assert_persistent with _ H Q; (* (j:=H) (P:=Q) *)
[env_cbv; reflexivity
|(*goal*)
|apply _ || fail "iAssert:" Q "not persistent"
|tac H]
| [SGoal ?k ?lr ?Hs] =>
eapply tac_assert with _ _ _ lr Hs H Q _; (* (js:=Hs) (j:=H) (P:=Q) *)
[match k with
| GoalStd => apply into_assert_default
Robbert Krebbers
committed
| GoalVs => apply _ || fail "iAssert: cannot generate view shifted goal"
|env_cbv; reflexivity || fail "iAssert:" Hs "not found"
|tac H]
| ?pat => fail "iAssert: invalid pattern" pat
end.
Tactic Notation "iAssert" open_constr(Q) "with" constr(Hs) "as" constr(pat) :=
iAssertCore Q with Hs as (fun H => iDestructHyp H as pat).
Tactic Notation "iAssert" open_constr(Q) "as" constr(pat) :=
iAssert Q with "[]" as pat.
Tactic Notation "iAssert" open_constr(Q) "with" constr(Hs)
"as" "%" simple_intropattern(pat) :=
iAssertCore Q with Hs as (fun H => iPure H as pat).
Tactic Notation "iAssert" open_constr(Q) "as" "%" simple_intropattern(pat) :=
iAssert Q with "[]" as %pat.
Local Ltac iRewriteFindPred :=
match goal with
| |- _ ⊣⊢ ?Φ ?x =>
generalize x;
match goal with |- (∀ y, @?Ψ y ⊣⊢ _) => unify Φ Ψ; reflexivity end
end.
Local Tactic Notation "iRewriteCore" constr(lr) open_constr(lem) :=
iPoseProofCore lem as true (fun Heq =>
eapply (tac_rewrite _ Heq _ _ lr);
[env_cbv; reflexivity || fail "iRewrite:" Heq "not found"
|let P := match goal with |- ?P ⊢ _ => P end in
reflexivity || fail "iRewrite:" P "not an equality"
|iRewriteFindPred
|intros ??? ->; reflexivity|lazy beta; iClear Heq]).
Tactic Notation "iRewrite" open_constr(lem) := iRewriteCore false lem.
Tactic Notation "iRewrite" "-" open_constr(lem) := iRewriteCore true lem.
Local Tactic Notation "iRewriteCore" constr(lr) open_constr(lem) "in" constr(H) :=
iPoseProofCore lem as true (fun Heq =>
eapply (tac_rewrite_in _ Heq _ _ H _ _ lr);
[env_cbv; reflexivity || fail "iRewrite:" Heq "not found"
|env_cbv; reflexivity || fail "iRewrite:" H "not found"
|let P := match goal with |- ?P ⊢ _ => P end in
reflexivity || fail "iRewrite:" P "not an equality"
|iRewriteFindPred
|intros ??? ->; reflexivity
|env_cbv; reflexivity|lazy beta; iClear Heq]).
Tactic Notation "iRewrite" open_constr(lem) "in" constr(H) :=
iRewriteCore false lem in H.
Tactic Notation "iRewrite" "-" open_constr(lem) "in" constr(H) :=
iRewriteCore true lem in H.
Robbert Krebbers
committed
Ltac iSimplifyEq := repeat (
iMatchGoal ltac:(fun H P => match P with (_ = _)%I => iDestruct H as %? end)