Newer
Older
From iris.program_logic Require Export weakestpre total_weakestpre.
From iris.heap_lang Require Import lang adequacy proofmode notation.
(* Import lang *again*. This used to break notation. *)
From iris.heap_lang Require Import lang.
Set Default Proof Using "Type".
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val → iProp Σ.
Definition simpl_test :
⌜(10 = 4 + 6)%nat⌝ -∗
WP let: "x" := ref #1 in "x" <- !"x";; !"x" {{ v, ⌜v = #1⌝ }}.
Proof.
iIntros "?". wp_alloc l. repeat (wp_pure _) || wp_load || wp_store.
match goal with
| |- context [ (10 = 4 + 6)%nat ] => done
end.
Qed.
let: "x" := ref #1 in "x" <- !"x" + #1 ;; !"x".
Lemma heap_e_spec E : WP heap_e @ E {{ v, ⌜v = #2⌝ }}%I.
iIntros "". rewrite /heap_e. Show.
wp_alloc l. wp_let. wp_load. Show.
wp_op. wp_store. by wp_load.
Definition heap_e2 : expr :=
let: "x" := ref #1 in
let: "y" := ref #1 in
"x" <- !"x" + #1 ;; !"x".
Lemma heap_e2_spec E : WP heap_e2 @ E [{ v, ⌜v = #2⌝ }]%I.
iIntros "". rewrite /heap_e2.
wp_alloc l. wp_let. wp_alloc l'. wp_let.
wp_load. wp_op. wp_store. wp_load. done.
Definition heap_e3 : expr :=
let: "x" := #true in
let: "f" := λ: "z", "z" + #1 in
if: "x" then "f" #0 else "f" #1.
Lemma heap_e3_spec E : WP heap_e3 @ E [{ v, ⌜v = #1⌝ }]%I.
Proof.
iIntros "". rewrite /heap_e3.
by repeat (wp_pure _).
Qed.
Definition heap_e4 : expr :=
let: "x" := (let: "y" := ref (ref #1) in ref "y") in
! ! !"x".
Lemma heap_e4_spec : WP heap_e4 [{ v, ⌜ v = #1 ⌝ }]%I.
Proof.
rewrite /heap_e4. wp_alloc l. wp_alloc l'. wp_let.
wp_alloc l''. wp_let. by repeat wp_load.
Qed.
Definition heap_e5 : expr :=
let: "x" := ref (ref #1) in FAA (!"x") (#10 + #1) + ! !"x".
Lemma heap_e5_spec E : WP heap_e5 @ E [{ v, ⌜v = #13⌝ }]%I.
Proof.
rewrite /heap_e5. wp_alloc l. wp_alloc l'. wp_let.
wp_load. wp_op. wp_faa. do 2 wp_load. wp_op. done.
Qed.
Definition heap_e6 : val := λ: "v", "v" = "v".
Lemma heap_e6_spec (v : val) : (WP heap_e6 v {{ w, ⌜ w = #true ⌝ }})%I.
Proof. wp_lam. wp_op. by case_bool_decide. Qed.
let: "yp" := "y" + #1 in
if: "yp" < "x" then "pred" "x" "yp" else "y".
if: "x" ≤ #0 then -FindPred (-"x" + #2) #0 else FindPred "x" #0.
Lemma FindPred_spec n1 n2 E Φ :
Φ #(n2 - 1) -∗ WP FindPred #n2 #n1 @ E [{ Φ }].
iIntros (Hn) "HΦ".
iInduction (Z.gt_wf n2 n1) as [n1' _] "IH" forall (Hn).
wp_rec. wp_let. wp_op. wp_let.
wp_op; case_bool_decide; wp_if.
- iApply ("IH" with "[%] [%] HΦ"); omega.
- by assert (n1' = n2 - 1) as -> by omega.
Lemma Pred_spec n E Φ : Φ #(n - 1) -∗ WP Pred #n @ E [{ Φ }].
iIntros "HΦ". wp_lam.
wp_op. case_bool_decide; wp_if.
wp_op. by replace (n - 1) with (- (-n + 2 - 1)) by omega.
WP let: "x" := Pred #42 in Pred "x" @ E [{ v, ⌜v = #40⌝ }]%I.
Proof. iIntros "". wp_apply Pred_spec. wp_let. by wp_apply Pred_spec. Qed.
Lemma wp_apply_evar e P :
P -∗ (∀ Q Φ, Q -∗ WP e {{ Φ }}) -∗ WP e {{ _, True }}.
Proof. iIntros "HP HW". wp_apply "HW". iExact "HP". Qed.
End tests.
Section printing_tests.
Context `{heapG Σ}.
Lemma wp_print_long_expr (fun1 fun2 fun3 : expr) :
True -∗ WP let: "val1" := fun1 #() in
let: "val2" := fun2 "val1" in
let: "val3" := fun3 "val2" in
if: "val1" = "val2" then "val" else "val3" {{ _, True }}.
Proof.
iIntros "_". Show.
Abort.
Lemma texan_triple_long_expr (fun1 fun2 fun3 : expr) :
{{{ True }}}
let: "val1" := fun1 #() in
let: "val2" := fun2 "val1" in
let: "val3" := fun3 "val2" in
if: "val1" = "val2" then "val" else "val3"
{{{ (x y : val) (z : Z), RET (x, y, #z); True }}}.
Proof. Show. Abort.
Lemma heap_e_adequate σ : adequate NotStuck heap_e σ (= #2).
Proof. eapply (heap_adequacy heapΣ)=> ?. by apply heap_e_spec. Qed.