Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
d64e67b0
Commit
d64e67b0
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
change notation for view shifts to ={E}=>
parent
f6909092
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
program_logic/hoare.v
+2
-2
2 additions, 2 deletions
program_logic/hoare.v
program_logic/hoare_lifting.v
+2
-2
2 additions, 2 deletions
program_logic/hoare_lifting.v
program_logic/viewshifts.v
+25
-25
25 additions, 25 deletions
program_logic/viewshifts.v
with
29 additions
and
29 deletions
program_logic/hoare.v
+
2
−
2
View file @
d64e67b0
...
...
@@ -36,7 +36,7 @@ Proof.
by
rewrite
-
wp_value
;
apply
const_intro
.
Qed
.
Lemma
ht_vs
E
P
P'
Q
Q'
e
:
((
P
>
{
E
}=>
P'
)
∧
{{
P'
}}
e
@
E
{{
Q'
}}
∧
∀
v
,
Q'
v
>
{
E
}=>
Q
v
)
((
P
=
{
E
}=>
P'
)
∧
{{
P'
}}
e
@
E
{{
Q'
}}
∧
∀
v
,
Q'
v
=
{
E
}=>
Q
v
)
⊑
{{
P
}}
e
@
E
{{
Q
}}
.
Proof
.
apply
(
always_intro'
_
_),
impl_intro_l
.
...
...
@@ -47,7 +47,7 @@ Proof.
Qed
.
Lemma
ht_atomic
E1
E2
P
P'
Q
Q'
e
:
E2
⊆
E1
→
atomic
e
→
((
P
>
{
E1
,
E2
}=>
P'
)
∧
{{
P'
}}
e
@
E2
{{
Q'
}}
∧
∀
v
,
Q'
v
>
{
E2
,
E1
}=>
Q
v
)
((
P
=
{
E1
,
E2
}=>
P'
)
∧
{{
P'
}}
e
@
E2
{{
Q'
}}
∧
∀
v
,
Q'
v
=
{
E2
,
E1
}=>
Q
v
)
⊑
{{
P
}}
e
@
E1
{{
Q
}}
.
Proof
.
intros
??;
apply
(
always_intro'
_
_),
impl_intro_l
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/hoare_lifting.v
+
2
−
2
View file @
d64e67b0
...
...
@@ -20,8 +20,8 @@ Lemma ht_lift_step E1 E2
E1
⊆
E2
→
to_val
e1
=
None
→
reducible
e1
σ1
→
(
∀
e2
σ2
ef
,
prim_step
e1
σ1
e2
σ2
ef
→
φ
e2
σ2
ef
)
→
((
P
>
{
E2
,
E1
}=>
ownP
σ1
★
▷
P'
)
∧
∀
e2
σ2
ef
,
(
■
φ
e2
σ2
ef
★
ownP
σ2
★
P'
>
{
E1
,
E2
}=>
Q1
e2
σ2
ef
★
Q2
e2
σ2
ef
)
∧
((
P
=
{
E2
,
E1
}=>
ownP
σ1
★
▷
P'
)
∧
∀
e2
σ2
ef
,
(
■
φ
e2
σ2
ef
★
ownP
σ2
★
P'
=
{
E1
,
E2
}=>
Q1
e2
σ2
ef
★
Q2
e2
σ2
ef
)
∧
{{
Q1
e2
σ2
ef
}}
e2
@
E2
{{
R
}}
∧
{{
Q2
e2
σ2
ef
}}
ef
?
@
coPset_all
{{
λ
_,
True
}})
⊑
{{
P
}}
e1
@
E2
{{
R
}}
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/viewshifts.v
+
25
−
25
View file @
d64e67b0
...
...
@@ -6,22 +6,22 @@ Definition vs {Λ Σ} (E1 E2 : coPset) (P Q : iProp Λ Σ) : iProp Λ Σ :=
(
□
(
P
→
pvs
E1
E2
Q
))
%
I
.
Arguments
vs
{_
_}
_
_
_
%
I
_
%
I
.
Instance
:
Params
(
@
vs
)
4
.
Notation
"P
>
{ E1 , E2 }=> Q"
:=
(
vs
E1
E2
P
%
I
Q
%
I
)
Notation
"P
=
{ E1 , E2 }=> Q"
:=
(
vs
E1
E2
P
%
I
Q
%
I
)
(
at
level
199
,
E1
at
level
1
,
E2
at
level
1
,
format
"P
>
{ E1 , E2 }=> Q"
)
:
uPred_scope
.
Notation
"P
>
{ E1 , E2 }=> Q"
:=
(
True
⊑
vs
E1
E2
P
%
I
Q
%
I
)
format
"P
=
{ E1 , E2 }=> Q"
)
:
uPred_scope
.
Notation
"P
=
{ E1 , E2 }=> Q"
:=
(
True
⊑
vs
E1
E2
P
%
I
Q
%
I
)
(
at
level
199
,
E1
at
level
1
,
E2
at
level
1
,
format
"P
>
{ E1 , E2 }=> Q"
)
:
C_scope
.
Notation
"P
>
{ E }=> Q"
:=
(
vs
E
E
P
%
I
Q
%
I
)
(
at
level
199
,
E
at
level
1
,
format
"P
>
{ E }=> Q"
)
:
uPred_scope
.
Notation
"P
>
{ E }=> Q"
:=
(
True
⊑
vs
E
E
P
%
I
Q
%
I
)
(
at
level
199
,
E
at
level
1
,
format
"P
>
{ E }=> Q"
)
:
C_scope
.
format
"P
=
{ E1 , E2 }=> Q"
)
:
C_scope
.
Notation
"P
=
{ E }=> Q"
:=
(
vs
E
E
P
%
I
Q
%
I
)
(
at
level
199
,
E
at
level
1
,
format
"P
=
{ E }=> Q"
)
:
uPred_scope
.
Notation
"P
=
{ E }=> Q"
:=
(
True
⊑
vs
E
E
P
%
I
Q
%
I
)
(
at
level
199
,
E
at
level
1
,
format
"P
=
{ E }=> Q"
)
:
C_scope
.
Section
vs
.
Context
{
Λ
:
language
}
{
Σ
:
iFunctor
}
.
Implicit
Types
P
Q
R
:
iProp
Λ
Σ
.
Lemma
vs_alt
E1
E2
P
Q
:
(
P
⊑
pvs
E1
E2
Q
)
→
P
>
{
E1
,
E2
}=>
Q
.
Lemma
vs_alt
E1
E2
P
Q
:
(
P
⊑
pvs
E1
E2
Q
)
→
P
=
{
E1
,
E2
}=>
Q
.
Proof
.
intros
;
rewrite
-
{
1
}
always_const
;
apply
always_intro
,
impl_intro_l
.
by
rewrite
always_const
(
right_id
_
_)
.
...
...
@@ -35,60 +35,60 @@ Global Instance vs_proper E1 E2 : Proper ((≡) ==> (≡) ==> (≡)) (@vs Λ Σ
Proof
.
apply
ne_proper_2
,
_
.
Qed
.
Lemma
vs_mono
E1
E2
P
P'
Q
Q'
:
P
⊑
P'
→
Q'
⊑
Q
→
(
P'
>
{
E1
,
E2
}=>
Q'
)
⊑
(
P
>
{
E1
,
E2
}=>
Q
)
.
P
⊑
P'
→
Q'
⊑
Q
→
(
P'
=
{
E1
,
E2
}=>
Q'
)
⊑
(
P
=
{
E1
,
E2
}=>
Q
)
.
Proof
.
by
intros
HP
HQ
;
rewrite
/
vs
-
HP
HQ
.
Qed
.
Global
Instance
vs_mono'
E1
E2
:
Proper
(
flip
(
⊑
)
==>
(
⊑
)
==>
(
⊑
))
(
@
vs
Λ
Σ
E1
E2
)
.
Proof
.
by
intros
until
2
;
apply
vs_mono
.
Qed
.
Lemma
vs_false_elim
E1
E2
P
:
False
>
{
E1
,
E2
}=>
P
.
Lemma
vs_false_elim
E1
E2
P
:
False
=
{
E1
,
E2
}=>
P
.
Proof
.
apply
vs_alt
,
False_elim
.
Qed
.
Lemma
vs_timeless
E
P
:
TimelessP
P
→
▷
P
>
{
E
}=>
P
.
Lemma
vs_timeless
E
P
:
TimelessP
P
→
▷
P
=
{
E
}=>
P
.
Proof
.
by
intros
?;
apply
vs_alt
,
pvs_timeless
.
Qed
.
Lemma
vs_transitive
E1
E2
E3
P
Q
R
:
E2
⊆
E1
∪
E3
→
((
P
>
{
E1
,
E2
}=>
Q
)
∧
(
Q
>
{
E2
,
E3
}=>
R
))
⊑
(
P
>
{
E1
,
E3
}=>
R
)
.
E2
⊆
E1
∪
E3
→
((
P
=
{
E1
,
E2
}=>
Q
)
∧
(
Q
=
{
E2
,
E3
}=>
R
))
⊑
(
P
=
{
E1
,
E3
}=>
R
)
.
Proof
.
intros
;
rewrite
-
always_and
;
apply
always_intro
,
impl_intro_l
.
rewrite
always_and
(
associative
_)
(
always_elim
(
P
→
_))
impl_elim_r
.
by
rewrite
pvs_impl_r
;
apply
pvs_trans
.
Qed
.
Lemma
vs_transitive'
E
P
Q
R
:
((
P
>
{
E
}=>
Q
)
∧
(
Q
>
{
E
}=>
R
))
⊑
(
P
>
{
E
}=>
R
)
.
Lemma
vs_transitive'
E
P
Q
R
:
((
P
=
{
E
}=>
Q
)
∧
(
Q
=
{
E
}=>
R
))
⊑
(
P
=
{
E
}=>
R
)
.
Proof
.
apply
vs_transitive
;
solve_elem_of
.
Qed
.
Lemma
vs_reflexive
E
P
:
P
>
{
E
}=>
P
.
Lemma
vs_reflexive
E
P
:
P
=
{
E
}=>
P
.
Proof
.
apply
vs_alt
,
pvs_intro
.
Qed
.
Lemma
vs_impl
E
P
Q
:
□
(
P
→
Q
)
⊑
(
P
>
{
E
}=>
Q
)
.
Lemma
vs_impl
E
P
Q
:
□
(
P
→
Q
)
⊑
(
P
=
{
E
}=>
Q
)
.
Proof
.
apply
always_intro
,
impl_intro_l
.
by
rewrite
always_elim
impl_elim_r
-
pvs_intro
.
Qed
.
Lemma
vs_frame_l
E1
E2
P
Q
R
:
(
P
>
{
E1
,
E2
}=>
Q
)
⊑
(
R
★
P
>
{
E1
,
E2
}=>
R
★
Q
)
.
Lemma
vs_frame_l
E1
E2
P
Q
R
:
(
P
=
{
E1
,
E2
}=>
Q
)
⊑
(
R
★
P
=
{
E1
,
E2
}=>
R
★
Q
)
.
Proof
.
apply
always_intro
,
impl_intro_l
.
rewrite
-
pvs_frame_l
always_and_sep_r
-
always_wand_impl
-
(
associative
_)
.
by
rewrite
always_elim
wand_elim_r
.
Qed
.
Lemma
vs_frame_r
E1
E2
P
Q
R
:
(
P
>
{
E1
,
E2
}=>
Q
)
⊑
(
P
★
R
>
{
E1
,
E2
}=>
Q
★
R
)
.
Lemma
vs_frame_r
E1
E2
P
Q
R
:
(
P
=
{
E1
,
E2
}=>
Q
)
⊑
(
P
★
R
=
{
E1
,
E2
}=>
Q
★
R
)
.
Proof
.
rewrite
!
(
commutative
_
_
R
);
apply
vs_frame_l
.
Qed
.
Lemma
vs_mask_frame
E1
E2
Ef
P
Q
:
Ef
∩
(
E1
∪
E2
)
=
∅
→
(
P
>
{
E1
,
E2
}=>
Q
)
⊑
(
P
>
{
E1
∪
Ef
,
E2
∪
Ef
}=>
Q
)
.
Ef
∩
(
E1
∪
E2
)
=
∅
→
(
P
=
{
E1
,
E2
}=>
Q
)
⊑
(
P
=
{
E1
∪
Ef
,
E2
∪
Ef
}=>
Q
)
.
Proof
.
intros
?;
apply
always_intro
,
impl_intro_l
;
rewrite
(
pvs_mask_frame
_
_
Ef
)
//.
by
rewrite
always_elim
impl_elim_r
.
Qed
.
Lemma
vs_mask_frame'
E
Ef
P
Q
:
Ef
∩
E
=
∅
→
(
P
>
{
E
}=>
Q
)
⊑
(
P
>
{
E
∪
Ef
}=>
Q
)
.
Lemma
vs_mask_frame'
E
Ef
P
Q
:
Ef
∩
E
=
∅
→
(
P
=
{
E
}=>
Q
)
⊑
(
P
=
{
E
∪
Ef
}=>
Q
)
.
Proof
.
intros
;
apply
vs_mask_frame
;
solve_elem_of
.
Qed
.
Lemma
vs_open_close
N
E
P
Q
R
:
nclose
N
⊆
E
→
(
inv
N
R
∧
(
▷
R
★
P
>
{
E
∖
nclose
N
}=>
▷
R
★
Q
))
⊑
(
P
>
{
E
}=>
Q
)
.
(
inv
N
R
∧
(
▷
R
★
P
=
{
E
∖
nclose
N
}=>
▷
R
★
Q
))
⊑
(
P
=
{
E
}=>
Q
)
.
Proof
.
intros
;
apply
(
always_intro'
_
_),
impl_intro_l
.
rewrite
associative
(
commutative
_
P
)
-
associative
.
...
...
@@ -99,7 +99,7 @@ Proof.
by
rewrite
/
vs
always_elim
impl_elim_r
.
Qed
.
Lemma
vs_alloc
(
N
:
namespace
)
P
:
▷
P
>
{
N
}=>
inv
N
P
.
Lemma
vs_alloc
(
N
:
namespace
)
P
:
▷
P
=
{
N
}=>
inv
N
P
.
Proof
.
by
intros
;
apply
vs_alt
,
pvs_alloc
.
Qed
.
End
vs
.
...
...
@@ -110,14 +110,14 @@ Implicit Types a : A.
Implicit
Types
P
Q
R
:
iProp
Λ
(
globalC
Σ
)
.
Lemma
vs_own_updateP
E
γ
a
φ
:
a
~~>:
φ
→
own
i
γ
a
>
{
E
}=>
∃
a'
,
■
φ
a'
∧
own
i
γ
a'
.
a
~~>:
φ
→
own
i
γ
a
=
{
E
}=>
∃
a'
,
■
φ
a'
∧
own
i
γ
a'
.
Proof
.
by
intros
;
apply
vs_alt
,
own_updateP
.
Qed
.
Lemma
vs_own_updateP_empty
`{
Empty
A
,
!
CMRAIdentity
A
}
E
γ
φ
:
∅
~~>:
φ
→
True
>
{
E
}=>
∃
a'
,
■
φ
a'
∧
own
i
γ
a'
.
∅
~~>:
φ
→
True
=
{
E
}=>
∃
a'
,
■
φ
a'
∧
own
i
γ
a'
.
Proof
.
by
intros
;
eapply
vs_alt
,
own_updateP_empty
.
Qed
.
Lemma
vs_update
E
γ
a
a'
:
a
~~>
a'
→
own
i
γ
a
>
{
E
}=>
own
i
γ
a'
.
Lemma
vs_update
E
γ
a
a'
:
a
~~>
a'
→
own
i
γ
a
=
{
E
}=>
own
i
γ
a'
.
Proof
.
by
intros
;
apply
vs_alt
,
own_update
.
Qed
.
End
vs_ghost
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment