Skip to content
Snippets Groups Projects
numbers.v 27.5 KiB
Newer Older
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects some trivial facts on the Coq types [nat] and [N] for
natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
From Coq Require Export EqdepFacts PArith NArith ZArith NPeano.
From Coq Require Import QArith Qcanon.
From stdpp Require Export base decidable option.
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed

Instance comparison_eq_dec : EqDecision comparison.
Proof. solve_decision. Defined.
(** * Notations and properties of [nat] *)
Arguments minus !_ !_ / : assert.
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y ≤ z ≤ z'"
  (at level 70, y at next level, z at next level).
Infix "≤" := le : nat_scope.
Notation "x ≤ y ≤ z" := (x  y  y  z)%nat : nat_scope.
Notation "x ≤ y < z" := (x  y  y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y  y  z)%nat : nat_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z')%nat : nat_scope.
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.

Infix "`div`" := Nat.div (at level 35) : nat_scope.
Infix "`mod`" := Nat.modulo (at level 35) : nat_scope.
Infix "`max`" := Nat.max (at level 35) : nat_scope.
Infix "`min`" := Nat.min (at level 35) : nat_scope.
Instance nat_eq_dec: EqDecision nat := eq_nat_dec.
Instance nat_le_dec: RelDecision le := le_dec.
Instance nat_lt_dec: RelDecision lt := lt_dec.
Instance nat_inhabited: Inhabited nat := populate 0%nat.
Proof. by injection 1. Qed.
Instance nat_le_po: PartialOrder ().
Proof. repeat split; repeat intro; auto with lia. Qed.
Instance nat_le_pi:  x y : nat, ProofIrrel (x  y).
Proof.
  assert ( x y (p : x  y) y' (q : x  y'),
    y = y'  eq_dep nat (le x) y p y' q) as aux.
  { fix FIX 3. intros x ? [|y p] ? [|y' q].
    - clear FIX. intros; exfalso; auto with lia.
    - clear FIX. intros; exfalso; auto with lia.
    - injection 1. intros Hy. by case (FIX x y p y' q Hy). }
  by apply (Eqdep_dec.eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Qed.
Instance nat_lt_pi:  x y : nat, ProofIrrel (x < y).
Proof. apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
Lemma nat_le_sum (x y : nat) : x  y   z, y = x + z.
Proof. split. exists (y - x); lia. intros [z ->]; lia. Qed.
Lemma Nat_lt_succ_succ n : n < S (S n).
Proof. auto with arith. Qed.
Lemma Nat_mul_split_l n x1 x2 y1 y2 :
  x2 < n  y2 < n  x1 * n + x2 = y1 * n + y2  x1 = y1  x2 = y2.
Proof.
  intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
  revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.
Lemma Nat_mul_split_r n x1 x2 y1 y2 :
  x1 < n  y1 < n  x1 + x2 * n = y1 + y2 * n  x1 = y1  x2 = y2.
Proof. intros. destruct (Nat_mul_split_l n x2 x1 y2 y1); auto with lia. Qed.
Notation lcm := Nat.lcm.
Notation divide := Nat.divide.
Notation "( x | y )" := (divide x y) : nat_scope.
Instance Nat_divide_dec : RelDecision Nat.divide.
  refine (λ x y, cast_if (decide (lcm x y = y))); by rewrite Nat.divide_lcm_iff.
Instance: PartialOrder divide.
Proof.
  repeat split; try apply _. intros ??. apply Nat.divide_antisym_nonneg; lia.
Qed.
Hint Extern 0 (_ | _) => reflexivity : core.
Lemma Nat_divide_ne_0 x y : (x | y)  y  0  x  0.
Proof. intros Hxy Hy ->. by apply Hy, Nat.divide_0_l. Qed.

Lemma Nat_iter_S {A} n (f: A  A) x : Nat.iter (S n) f x = f (Nat.iter n f x).
Proof. done. Qed.
Lemma Nat_iter_S_r {A} n (f: A  A) x : Nat.iter (S n) f x = Nat.iter n f (f x).
Robbert Krebbers's avatar
Robbert Krebbers committed
Proof. induction n; by f_equal/=. Qed.
Lemma Nat_iter_add {A} n1 n2 (f : A  A) x :
  Nat.iter (n1 + n2) f x = Nat.iter n1 f (Nat.iter n2 f x).
Proof. induction n1; by f_equal/=. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
Lemma Nat_iter_ind {A} (P : A  Prop) f x k :
Robbert Krebbers's avatar
Robbert Krebbers committed
  P x  ( y, P y  P (f y))  P (Nat.iter k f x).
Proof. induction k; simpl; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
Definition sum_list_with {A} (f : A  nat) : list A  nat :=
  fix go l :=
  match l with
  | [] => 0
  | x :: l => f x + go l
  end.
Notation sum_list := (sum_list_with id).

Definition max_list_with {A} (f : A  nat) : list A  nat :=
  fix go l :=
  match l with
  | [] => 0
  | x :: l => f x `max` go l
  end.
Notation max_list := (max_list_with id).

(** * Notations and properties of [positive] *)
Open Scope positive_scope.

Infix "≤" := Pos.le : positive_scope.
Notation "x ≤ y ≤ z" := (x  y  y  z) : positive_scope.
Notation "x ≤ y < z" := (x  y  y < z) : positive_scope.
Notation "x < y ≤ z" := (x < y  y  z) : positive_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : positive_scope.
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.

Arguments Pos.of_nat : simpl never.
Arguments Pmult : simpl never.

Instance positive_eq_dec: EqDecision positive := Pos.eq_dec.
Instance positive_le_dec: RelDecision Pos.le.
Proof. refine (λ x y, decide ((x ?= y)  Gt)). Defined.
Instance positive_lt_dec: RelDecision Pos.lt.
Proof. refine (λ x y, decide ((x ?= y) = Lt)). Defined.
Instance positive_inhabited: Inhabited positive := populate 1.

Instance maybe_xO : Maybe xO := λ p, match p with p~0 => Some p | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
Instance maybe_xI : Maybe xI := λ p, match p with p~1 => Some p | _ => None end.
Instance xO_inj : Inj (=) (=) (~0).
Robbert Krebbers's avatar
Robbert Krebbers committed
Proof. by injection 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
Instance xI_inj : Inj (=) (=) (~1).
Robbert Krebbers's avatar
Robbert Krebbers committed
Proof. by injection 1. Qed.

(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint Papp (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => (Papp p1 p2)~0
  | p2~1 => (Papp p1 p2)~1
  end.
Infix "++" := Papp : positive_scope.
Notation "(++)" := Papp (only parsing) : positive_scope.
Notation "( p ++)" := (Papp p) (only parsing) : positive_scope.
Notation "(++ q )" := (λ p, Papp p q) (only parsing) : positive_scope.

Fixpoint Preverse_go (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => Preverse_go (p1~0) p2
  | p2~1 => Preverse_go (p1~1) p2
  end.
Definition Preverse : positive  positive := Preverse_go 1.

Robbert Krebbers's avatar
Robbert Krebbers committed
Global Instance Papp_1_l : LeftId (=) 1 (++).
Proof. intros p. by induction p; intros; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
Global Instance Papp_1_r : RightId (=) 1 (++).
Robbert Krebbers's avatar
Robbert Krebbers committed
Global Instance Papp_assoc : Assoc (=) (++).
Proof. intros ?? p. by induction p; intros; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
Global Instance Papp_inj p : Inj (=) (=) (++ p).
Proof. intros ???. induction p; simplify_eq; auto. Qed.

Lemma Preverse_go_app p1 p2 p3 :
  Preverse_go p1 (p2 ++ p3) = Preverse_go p1 p3 ++ Preverse_go 1 p2.
Proof.
  revert p3 p1 p2.
  cut ( p1 p2 p3, Preverse_go (p2 ++ p3) p1 = p2 ++ Preverse_go p3 p1).
  { by intros go p3; induction p3; intros p1 p2; simpl; auto; rewrite <-?go. }
  intros p1; induction p1 as [p1 IH|p1 IH|]; intros p2 p3; simpl; auto.
  - apply (IH _ (_~1)).
  - apply (IH _ (_~0)).
Lemma Preverse_app p1 p2 : Preverse (p1 ++ p2) = Preverse p2 ++ Preverse p1.
Proof. unfold Preverse. by rewrite Preverse_go_app. Qed.
Lemma Preverse_xO p : Preverse (p~0) = (1~0) ++ Preverse p.
Proof Preverse_app p (1~0).
Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p.
Proof Preverse_app p (1~1).

Fixpoint Plength (p : positive) : nat :=
  match p with 1 => 0%nat | p~0 | p~1 => S (Plength p) end.
Lemma Papp_length p1 p2 : Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat.
Proof. by induction p2; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
Lemma Plt_sum (x y : positive) : x < y   z, y = x + z.
Proof.
  split.
  - exists (y - x)%positive. symmetry. apply Pplus_minus. lia.
  - intros [z ->]. lia.
Qed.

Close Scope positive_scope.

(** * Notations and properties of [N] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
Infix "≤" := N.le : N_scope.
Notation "x ≤ y ≤ z" := (x  y  y  z)%N : N_scope.
Notation "x ≤ y < z" := (x  y  y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y  y  z)%N : N_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z')%N : N_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
Notation "(≤)" := N.le (only parsing) : N_scope.
Notation "(<)" := N.lt (only parsing) : N_scope.
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.

Arguments N.add : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
Instance Npos_inj : Inj (=) (=) Npos.
Robbert Krebbers's avatar
Robbert Krebbers committed
Proof. by injection 1. Qed.

Instance N_eq_dec: EqDecision N := N.eq_dec.
Program Instance N_le_dec : RelDecision N.le := λ x y,
  match N.compare x y with Gt => right _ | _ => left _ end.
Solve Obligations with naive_solver.
Program Instance N_lt_dec : RelDecision N.lt := λ x y,
  match N.compare x y with Lt => left _ | _ => right _ end.
Solve Obligations with naive_solver.
Instance N_inhabited: Inhabited N := populate 1%N.
Instance N_le_po: PartialOrder ()%N.
Proof.
  repeat split; red. apply N.le_refl. apply N.le_trans. apply N.le_antisymm.
Qed.
Hint Extern 0 (_  _)%N => reflexivity : core.
Robbert Krebbers's avatar
Robbert Krebbers committed

(** * Notations and properties of [Z] *)
Open Scope Z_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
Infix "≤" := Z.le : Z_scope.
Notation "x ≤ y ≤ z" := (x  y  y  z) : Z_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Z_scope.
Notation "x < y < z" := (x < y  y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Z_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
Notation "(≤)" := Z.le (only parsing) : Z_scope.
Notation "(<)" := Z.lt (only parsing) : Z_scope.
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Instance Zpos_inj : Inj (=) (=) Zpos.
Instance Zneg_inj : Inj (=) (=) Zneg.
Instance Z_of_nat_inj : Inj (=) (=) Z.of_nat.
Proof. intros n1 n2. apply Nat2Z.inj. Qed.

Instance Z_eq_dec: EqDecision Z := Z.eq_dec.
Instance Z_le_dec: RelDecision Z.le := Z_le_dec.
Instance Z_lt_dec: RelDecision Z.lt := Z_lt_dec.
Instance Z_inhabited: Inhabited Z := populate 1.
Instance Z_le_po : PartialOrder ().
Proof.
  repeat split; red. apply Z.le_refl. apply Z.le_trans. apply Z.le_antisymm.
Qed.

Lemma Z_pow_pred_r n m : 0 < m  n * n ^ (Z.pred m) = n ^ m.
Proof.
  intros. rewrite <-Z.pow_succ_r, Z.succ_pred. done. by apply Z.lt_le_pred.
Qed.
Lemma Z_quot_range_nonneg k x y : 0  x < k  0 < y  0  x `quot` y < k.
Proof.
  intros [??] ?.
  destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
  destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
  split. apply Z.quot_pos; lia. trans x; auto. apply Z.quot_lt; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed

Arguments Z.pred : simpl never.
Arguments Z.succ : simpl never.
Arguments Z.of_nat : simpl never.
Arguments Z.to_nat : simpl never.
Arguments Z.mul : simpl never.
Arguments Z.add : simpl never.
Arguments Z.sub : simpl never.
Arguments Z.opp : simpl never.
Arguments Z.pow : simpl never.
Arguments Z.div : simpl never.
Arguments Z.modulo : simpl never.
Arguments Z.quot : simpl never.
Arguments Z.rem : simpl never.
Arguments Z.shiftl : simpl never.
Arguments Z.shiftr : simpl never.
Arguments Z.gcd : simpl never.
Arguments Z.lcm : simpl never.
Arguments Z.min : simpl never.
Arguments Z.max : simpl never.
Arguments Z.lor : simpl never.
Arguments Z.land : simpl never.
Arguments Z.lxor : simpl never.
Arguments Z.lnot : simpl never.
Arguments Z.square : simpl never.
Arguments Z.abs : simpl never.
Lemma Z_to_nat_neq_0_pos x : Z.to_nat x  0%nat  0 < x.
Proof. by destruct x. Qed.
Lemma Z_to_nat_neq_0_nonneg x : Z.to_nat x  0%nat  0  x.
Proof. by destruct x. Qed.
Lemma Z_mod_pos x y : 0 < y  0  x `mod` y.
Proof. apply Z.mod_pos_bound. Qed.

Hint Resolve Z.lt_le_incl : zpos.
Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
Hint Resolve Z_mod_pos Z.div_pos : zpos.
Robbert Krebbers's avatar
Robbert Krebbers committed
Lemma Z_to_nat_nonpos x : x  0  Z.to_nat x = 0%nat.
Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.
Lemma Z2Nat_inj_pow (x y : nat) : Z.of_nat (x ^ y) = x ^ y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
  induction y as [|y IH]; [by rewrite Z.pow_0_r, Nat.pow_0_r|].
  by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
    Nat2Z.inj_mul, IH by auto with zpos.
Robbert Krebbers's avatar
Robbert Krebbers committed
Lemma Nat2Z_divide n m : (Z.of_nat n | Z.of_nat m)  (n | m)%nat.
Proof.
  split.
  - rewrite <-(Nat2Z.id m) at 2; intros [i ->]; exists (Z.to_nat i).
Robbert Krebbers's avatar
Robbert Krebbers committed
    destruct (decide (0  i)%Z).
    { by rewrite Z2Nat.inj_mul, Nat2Z.id by lia. }
    by rewrite !Z_to_nat_nonpos by auto using Z.mul_nonpos_nonneg with lia.
  - intros [i ->]. exists (Z.of_nat i). by rewrite Nat2Z.inj_mul.
Robbert Krebbers's avatar
Robbert Krebbers committed
Qed.
Lemma Z2Nat_divide n m :
  0  n  0  m  (Z.to_nat n | Z.to_nat m)%nat  (n | m).
Proof. intros. by rewrite <-Nat2Z_divide, !Z2Nat.id by done. Qed.
Lemma Z2Nat_inj_div x y : Z.of_nat (x `div` y) = x `div` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.div_unique with (x `mod` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Lemma Z2Nat_inj_mod x y : Z.of_nat (x `mod` y) = x `mod` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.mod_unique with (x `div` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Close Scope Z_scope.

(** * Injectivity of casts *)
Instance N_of_nat_inj: Inj (=) (=) N.of_nat := Nat2N.inj.
Instance nat_of_N_inj: Inj (=) (=) N.to_nat := N2Nat.inj.
Instance nat_of_pos_inj: Inj (=) (=) Pos.to_nat := Pos2Nat.inj.
Instance pos_of_Snat_inj: Inj (=) (=) Pos.of_succ_nat := SuccNat2Pos.inj.
Instance Z_of_N_inj: Inj (=) (=) Z.of_N := N2Z.inj.
(* Add others here. *)

(** * Notations and properties of [Qc] *)
Open Scope Qc_scope.
Delimit Scope Qc_scope with Qc.
Notation "1" := (Q2Qc 1) : Qc_scope.
Notation "2" := (1+1) : Qc_scope.
Notation "- 1" := (Qcopp 1) : Qc_scope.
Notation "- 2" := (Qcopp 2) : Qc_scope.
Infix "≤" := Qcle : Qc_scope.
Notation "x ≤ y ≤ z" := (x  y  y  z) : Qc_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Qc_scope.
Notation "x < y < z" := (x < y  y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Qc_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : Qc_scope.
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.

Hint Extern 1 (_  _) => reflexivity || discriminate : core.
Arguments Qred : simpl never.
Instance Qc_eq_dec: EqDecision Qc := Qc_eq_dec.
Program Instance Qc_le_dec: RelDecision Qcle := λ x y,
  if Qclt_le_dec y x then right _ else left _.
Next Obligation. intros x y; apply Qclt_not_le. Qed.
Next Obligation. done. Qed.
Program Instance Qc_lt_dec: RelDecision Qclt := λ x y,
  if Qclt_le_dec x y then left _ else right _.
Solve Obligations with try done.
Next Obligation. intros x y; apply Qcle_not_lt. Qed.
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Qcle_refl. apply Qcle_trans. apply Qcle_antisym.
Qed.
Instance: StrictOrder (<).
Proof.
  split; red. intros x Hx. by destruct (Qclt_not_eq x x). apply Qclt_trans.
Qed.
Lemma Qcmult_0_l x : 0 * x = 0.
Proof. ring. Qed.
Lemma Qcmult_0_r x : x * 0 = 0.
Proof. ring. Qed.
Lemma Qcplus_diag x : (x + x)%Qc = (2 * x)%Qc.
Proof. ring. Qed.
Lemma Qcle_ngt (x y : Qc) : x  y  ¬y < x.
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
Lemma Qclt_nge (x y : Qc) : x < y  ¬y  x.
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.
Lemma Qcplus_le_mono_l (x y z : Qc) : x  y  z + x  z + y.
  - by apply Qcplus_le_compat.
  - replace x with ((0 - z) + (z + x)) by ring.
    replace y with ((0 - z) + (z + y)) by ring.
Lemma Qcplus_le_mono_r (x y z : Qc) : x  y  x + z  y + z.
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y  z + x < z + y.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y  x + z < y + z.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
Instance Qcopp_inj : Inj (=) (=) Qcopp.
Proof.
  intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
Instance Qcplus_inj_r z : Inj (=) (=) (Qcplus z).
  intros x y H. by apply (anti_symm ());rewrite (Qcplus_le_mono_l _ _ z), H.
Instance Qcplus_inj_l z : Inj (=) (=) (λ x, x + z).
  intros x y H. by apply (anti_symm ()); rewrite (Qcplus_le_mono_r _ _ z), H.
Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x  0  y  0 < x + y.
Proof.
  intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0  x  0 < y  0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed. 
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x  0 < y  0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0  x  0  y  0  x + y.
Proof.
  intros. trans (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0  y  0  x + y < 0.
Proof.
  intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x  0  y < 0  x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0  y < 0  x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x  0  y  0  x + y  0.
Proof.
  intros. trans (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcmult_le_mono_nonneg_l x y z : 0  z  x  y  z * x  z * y.
Proof. intros. rewrite !(Qcmult_comm z). by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_nonneg_r x y z : 0  z  x  y  x * z  y * z.
Proof. intros. by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_pos_l x y z : 0 < z  x  y  z * x  z * y.
Proof.
  split; auto using Qcmult_le_mono_nonneg_l, Qclt_le_weak.
  rewrite !Qcle_ngt, !(Qcmult_comm z).
  intuition auto using Qcmult_lt_compat_r.
Qed.
Lemma Qcmult_le_mono_pos_r x y z : 0 < z  x  y  x * z  y * z.
Proof. rewrite !(Qcmult_comm _ z). by apply Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_l x y z : 0 < z  x < y  z * x < z * y.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_r x y z : 0 < z  x < y  x * z < y * z.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_r. Qed.
Lemma Qcmult_pos_pos x y : 0 < x  0 < y  0 < x * y.
Proof.
  intros. apply Qcle_lt_trans with (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_lt_mono_pos_r.
Qed.
Lemma Qcmult_nonneg_nonneg x y : 0  x  0  y  0  x * y.
Proof.
  intros. trans (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_le_mono_nonneg_r.
Qed.

Lemma inject_Z_Qred n : Qred (inject_Z n) = inject_Z n.
Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Coercion Qc_of_Z (n : Z) : Qc := Qcmake _ (inject_Z_Qred n).
Lemma Z2Qc_inj_0 : Qc_of_Z 0 = 0.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_1 : Qc_of_Z 1 = 1.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_2 : Qc_of_Z 2 = 2.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj n m : Qc_of_Z n = Qc_of_Z m  n = m.
Proof. by injection 1. Qed.
Lemma Z2Qc_inj_iff n m : Qc_of_Z n = Qc_of_Z m  n = m.
Proof. split. auto using Z2Qc_inj. by intros ->. Qed.
Lemma Z2Qc_inj_le n m : (n  m)%Z  Qc_of_Z n  Qc_of_Z m.
Proof. by rewrite Zle_Qle. Qed.
Lemma Z2Qc_inj_lt n m : (n < m)%Z  Qc_of_Z n < Qc_of_Z m.
Proof. by rewrite Zlt_Qlt. Qed.
Lemma Z2Qc_inj_add n m : Qc_of_Z (n + m) = Qc_of_Z n + Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_plus. Qed.
Lemma Z2Qc_inj_mul n m : Qc_of_Z (n * m) = Qc_of_Z n * Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_mult. Qed.
Lemma Z2Qc_inj_opp n : Qc_of_Z (-n) = -Qc_of_Z n.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_opp. Qed.
Lemma Z2Qc_inj_sub n m : Qc_of_Z (n - m) = Qc_of_Z n - Qc_of_Z m.
Proof.
  apply Qc_is_canon; simpl.
  by rewrite !Qred_correct, <-inject_Z_opp, <-inject_Z_plus.
Qed.
Close Scope Qc_scope.

(** * Positive rationals *)
(** The theory of positive rationals is very incomplete. We merely provide
some operations and theorems that are relevant for fractional permissions. *)
Record Qp := mk_Qp { Qp_car :> Qc ; Qp_prf : (0 < Qp_car)%Qc }.
Hint Resolve Qp_prf : core.
Delimit Scope Qp_scope with Qp.
Bind Scope Qp_scope with Qp.
Arguments Qp_car _%Qp : assert.

Definition Qp_one : Qp := mk_Qp 1 eq_refl.
Program Definition Qp_plus (x y : Qp) : Qp := mk_Qp (x + y) _.
Next Obligation. by intros x y; apply Qcplus_pos_pos. Qed.
Definition Qp_minus (x y : Qp) : option Qp :=
  let z := (x - y)%Qc in
  match decide (0 < z)%Qc with left Hz => Some (mk_Qp z Hz) | _ => None end.
Program Definition Qp_mult (x y : Qp) : Qp := mk_Qp (x * y) _.
Next Obligation. intros x y. apply Qcmult_pos_pos; apply Qp_prf. Qed.

Program Definition Qp_div (x : Qp) (y : positive) : Qp := mk_Qp (x / Zpos y) _.
Next Obligation.
Ralf Jung's avatar
Ralf Jung committed
  intros x y. unfold Qcdiv. assert (0 < Zpos y)%Qc.
  { apply (Z2Qc_inj_lt 0%Z (Zpos y)), Pos2Z.is_pos. }
  by rewrite (Qcmult_lt_mono_pos_r _ _ (Zpos y)%Z), Qcmult_0_l,
    <-Qcmult_assoc, Qcmult_inv_l, Qcmult_1_r.
Qed.

Infix "+" := Qp_plus : Qp_scope.
Infix "-" := Qp_minus : Qp_scope.
Infix "*" := Qp_mult : Qp_scope.
Infix "/" := Qp_div : Qp_scope.
Notation "1" := Qp_one : Qp_scope.
Notation "2" := (1 + 1)%Qp : Qp_scope.
Notation "3" := (1 + 2)%Qp : Qp_scope.
Notation "4" := (1 + 3)%Qp : Qp_scope.

Lemma Qp_eq x y : x = y  Qp_car x = Qp_car y.
Proof.
  split; [by intros ->|].
  destruct x, y; intros; simplify_eq/=; f_equal; apply (proof_irrel _).
Qed.

Instance Qp_inhabited : Inhabited Qp := populate 1%Qp.
Instance Qp_eq_dec : EqDecision Qp.
Proof.
 refine (λ x y, cast_if (decide (Qp_car x = Qp_car y))); by rewrite Qp_eq.
Defined.

Instance Qp_plus_assoc : Assoc (=) Qp_plus.
Proof. intros x y z; apply Qp_eq, Qcplus_assoc. Qed.
Instance Qp_plus_comm : Comm (=) Qp_plus.
Proof. intros x y; apply Qp_eq, Qcplus_comm. Qed.
Instance Qp_plus_inj_r p : Inj (=) (=) (Qp_plus p).
Proof. intros q1 q2. rewrite !Qp_eq; simpl. apply (inj _). Qed.
Instance Qp_plus_inj_l p : Inj (=) (=) (λ q, q + p)%Qp.
Proof. intros q1 q2. rewrite !Qp_eq; simpl. apply (inj (λ q, q + p)%Qc). Qed.

Lemma Qp_minus_diag x : (x - x)%Qp = None.
Ralf Jung's avatar
Ralf Jung committed
Proof. unfold Qp_minus, Qcminus. by rewrite Qcplus_opp_r. Qed.
Lemma Qp_op_minus x y : ((x + y) - x)%Qp = Some y.
Proof.
Ralf Jung's avatar
Ralf Jung committed
  unfold Qp_minus, Qcminus; simpl.
  rewrite (Qcplus_comm x), <- Qcplus_assoc, Qcplus_opp_r, Qcplus_0_r.
  destruct (decide _) as [|[]]; auto. by f_equal; apply Qp_eq.
Qed.

Instance Qp_mult_assoc : Assoc (=) Qp_mult.
Proof. intros x y z; apply Qp_eq, Qcmult_assoc. Qed.
Instance Qp_mult_comm : Comm (=) Qp_mult.
Proof. intros x y; apply Qp_eq, Qcmult_comm. Qed.
Lemma Qp_mult_plus_distr_r x y z: (x * (y + z) = x * y + x * z)%Qp.
Proof. apply Qp_eq, Qcmult_plus_distr_r. Qed.
Lemma Qp_mult_plus_distr_l x y z: ((x + y) * z = x * z + y * z)%Qp.
Proof. apply Qp_eq, Qcmult_plus_distr_l. Qed.
Lemma Qp_mult_1_l x: (1 * x)%Qp = x.
Proof. apply Qp_eq, Qcmult_1_l. Qed.
Lemma Qp_mult_1_r x: (x * 1)%Qp = x.
Proof. apply Qp_eq, Qcmult_1_r. Qed.

Lemma Qp_div_1 x : (x / 1 = x)%Qp.
Proof.
  apply Qp_eq; simpl.
  rewrite <-(Qcmult_div_r x 1) at 2 by done. by rewrite Qcmult_1_l.
Qed.
Lemma Qp_div_S x y : (x / (2 * y) + x / (2 * y) = x / y)%Qp.
Proof.
Ralf Jung's avatar
Ralf Jung committed
  apply Qp_eq; simpl. unfold Qcdiv.
  rewrite <-Qcmult_plus_distr_l, Pos2Z.inj_mul, Z2Qc_inj_mul, Z2Qc_inj_2.
  rewrite Qcplus_diag. by field_simplify.
Qed.
Lemma Qp_div_2 x : (x / 2 + x / 2 = x)%Qp.
Proof.
  change 2%positive with (2 * 1)%positive. by rewrite Qp_div_S, Qp_div_1.
Qed.
Lemma Qp_half_half : (1 / 2 + 1 / 2 = 1)%Qp.
Proof. apply (bool_decide_unpack _); by compute. Qed.
Lemma Qp_quarter_three_quarter : (1 / 4 + 3 / 4 = 1)%Qp.
Proof. apply (bool_decide_unpack _); by compute. Qed.
Lemma Qp_three_quarter_quarter : (3 / 4 + 1 / 4 = 1)%Qp.
Proof. apply (bool_decide_unpack _); by compute. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
Lemma Qp_lt_sum (x y : Qp) : (x < y)%Qc   z, y = (x + z)%Qp.
Proof.
  split.
  - intros Hlt%Qclt_minus_iff. exists (mk_Qp (y - x) Hlt). apply Qp_eq; simpl.
Ralf Jung's avatar
Ralf Jung committed
    unfold Qcminus. by rewrite (Qcplus_comm y), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
  - intros [z ->]; simpl.
    rewrite <-(Qcplus_0_r x) at 1. apply Qcplus_lt_mono_l, Qp_prf.
Qed.

Lemma Qp_lower_bound q1 q2 :  q q1' q2', (q1 = q + q1'  q2 = q + q2')%Qp.
Proof.
  revert q1 q2. cut ( q1 q2 : Qp, (q1  q2)%Qc 
     q q1' q2', (q1 = q + q1'  q2 = q + q2')%Qp).
  { intros help q1 q2.
    destruct (Qc_le_dec q1 q2) as [LE|LE%Qclt_nge%Qclt_le_weak]; [by eauto|].
    destruct (help q2 q1) as (q&q1'&q2'&?&?); eauto. }
  intros q1 q2 Hq. exists (q1 / 2)%Qp, (q1 / 2)%Qp.
Ralf Jung's avatar
Ralf Jung committed
  assert (0 < q2 +- q1 */ 2)%Qc as Hq2'.
  { eapply Qclt_le_trans; [|by apply Qcplus_le_mono_r, Hq].
Ralf Jung's avatar
Ralf Jung committed
    replace (q1 +- q1 */ 2)%Qc with (q1 * (1 +- 1*/2))%Qc by ring.
    replace 0%Qc with (0 * (1+-1*/2))%Qc by ring. by apply Qcmult_lt_compat_r. }
  exists (mk_Qp (q2 +- q1 */ 2%Z) Hq2'). split; [by rewrite Qp_div_2|].
  apply Qp_eq; simpl. unfold Qcdiv. ring.
Lemma Qp_cross_split p a b c d :
  (a + b = p  c + d = p 
   ac ad bc bd, ac + ad = a  bc + bd = b  ac + bc = c  ad + bd = d)%Qp.
Proof.
  intros H <-. revert a b c d H. cut ( a b c d : Qp,
    (a < c)%Qc  a + b = c + d 
     ac ad bc bd, ac + ad = a  bc + bd = b  ac + bc = c  ad + bd = d)%Qp.
  { intros help a b c d ?.
    destruct (Qclt_le_dec a c) as [?|[?| ->%Qp_eq]%Qcle_lt_or_eq].
    - auto.
    - destruct (help c d a b); [done..|]. naive_solver.
    - apply (inj _) in H as ->. destruct (Qp_lower_bound a d) as (q&a'&d'&->&->).
      eauto 10 using (comm_L Qp_plus). }
  intros a b c d [e ->]%Qp_lt_sum. rewrite <-(assoc_L _). intros ->%(inj _).
  destruct (Qp_lower_bound a d) as (q&a'&d'&->&->).
  eexists a', q, (q + e)%Qp, d'; split_and?; auto using (comm_L Qp_plus).
  - by rewrite (assoc_L _), (comm_L Qp_plus e).
  - by rewrite (assoc_L _), (comm_L Qp_plus a').
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
Lemma Qp_bounded_split (p r : Qp) :  q1 q2 : Qp, (q1  r)%Qc  p = (q1 + q2)%Qp.
Proof.
  destruct (Qclt_le_dec r p) as [?|?].
Ralf Jung's avatar
Ralf Jung committed
  - assert (0 < p +- r)%Qc as Hpos.
Robbert Krebbers's avatar
Robbert Krebbers committed
    { apply (Qcplus_lt_mono_r _ _ r). rewrite <-Qcplus_assoc, (Qcplus_comm (-r)).
      by rewrite Qcplus_opp_r, Qcplus_0_l, Qcplus_0_r. }
    exists r, (mk_Qp _ Hpos); simpl; split; [done|].
    apply Qp_eq; simpl. rewrite Qcplus_comm, <-Qcplus_assoc, (Qcplus_comm (-r)).
    by rewrite Qcplus_opp_r, Qcplus_0_r.
  - exists (p / 2)%Qp, (p / 2)%Qp; split.
    + trans p; [|done]. apply Qclt_le_weak, Qp_lt_sum.
      exists (p / 2)%Qp. by rewrite Qp_div_2.
    + by rewrite Qp_div_2.
Qed.

Zhen Zhang's avatar
Zhen Zhang committed
Lemma Qp_not_plus_q_ge_1 (q: Qp): ¬ ((1 + q)%Qp  1%Qp)%Qc.
Proof.
  intros Hle.
  apply (Qcplus_le_mono_l q 0 1) in Hle.
Zhen Zhang's avatar
Zhen Zhang committed
  apply Qcle_ngt in Hle. apply Hle, Qp_prf.
Zhen Zhang's avatar
Zhen Zhang committed

Lemma Qp_ge_0 (q: Qp): (0  q)%Qc.
Proof. apply Qclt_le_weak, Qp_prf. Qed.