Newer
Older
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
Robbert Krebbers
committed
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
Robbert Krebbers
committed
Require Export Permutation.
Require Export numbers base decidable option.
Arguments length {_} _.
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
Robbert Krebbers
committed
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.
Robbert Krebbers
committed
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Instance list_lookup {A} : Lookup nat A (list A) :=
fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
| [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Instance list_alter {A} : Alter nat A (list A) := λ f,
fix go i l {struct l} :=
| x :: l => match i with 0 => f x :: l | S i => x :: go i l end
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
Instance list_insert {A} : Insert nat A (list A) :=
fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
match l with
| [] => []
| x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
end.
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
Instance list_delete {A} : Delete nat (list A) :=
fix go (i : nat) (l : list A) {struct l} : list A :=
match l with
| [] => []
Robbert Krebbers
committed
| x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
Robbert Krebbers
committed
end.
(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Definition option_list {A} : option A → list A := option_rect _ (λ x, [x]) [].
Definition list_singleton {A} (l : list A) : option A :=
match l with [x] => Some x | _ => None end.
(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
fix go P _ l := let _ : Filter _ _ := @go in
| x :: l => if decide (P x) then x :: filter P l else filter P l
end.
(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option nat :=
fix go l :=
match l with
| [] => None | x :: l => if decide (P x) then Some 0 else S <$> go l
(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
Robbert Krebbers
committed
match n with 0 => [] | S n => x :: replicate n x end.
(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
match l with [] => None | [x] => Some x | _ :: l => last l end.
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
match l with
| [] => replicate n y
Robbert Krebbers
committed
| x :: l => match n with 0 => [] | S n => x :: resize n y l end
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
match szs with
| [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
guard (i + n ≤ length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
(i n : nat) (l : list A) : list A :=
take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A → B → A) : A → list B → A :=
fix go a l := match l with [] => a | x :: l => go (f a x) l end.
(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap : FMap list := λ A B f,
fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Instance list_omap : OMap list := λ A B f,
fix go (l : list A) :=
match l with
| [] => []
| x :: l => match f x with Some y => y :: go l | None => go l end
end.
Instance list_bind : MBind list := λ A B f,
fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
Instance list_join: MJoin list :=
fix go A (ls : list (list A)) : list A :=
Robbert Krebbers
committed
match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
Definition mapM `{MBind M, MRet M} {A B} (f : A → M B) : list A → M (list B) :=
match l with [] => mret [] | x :: l => y ← f x; k ← go l; mret (y :: k) end.
(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat → A → B) : nat → list A → list B :=
fix go (n : nat) (l : list A) :=
Robbert Krebbers
committed
match l with [] => [] | x :: l => f n x :: go (S n) l end.
Definition imap {A B} (f : nat → A → B) : list A → list B := imap_go f 0.
Robbert Krebbers
committed
Definition zipped_map {A B} (f : list A → list A → A → B) :
list A → list A → list B := fix go l k :=
match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.
Inductive zipped_Forall {A} (P : list A → list A → A → Prop) :
list A → list A → Prop :=
| zipped_Forall_nil l : zipped_Forall P l []
| zipped_Forall_cons l k x :
P l k x → zipped_Forall P (x :: l) k → zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
match βs, l with
| β :: βs, x :: l => (if β then f x else x) :: mask f βs l
| _, _ => l
end.
(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
match l with
| [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
match l with [] => [[]] | x :: l => permutations l ≫= interleave x end.
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
Definition suffix_of {A} : relation (list A) := λ l1 l2, ∃ k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2, ∃ k, l2 = l1 ++ k.
Robbert Krebbers
committed
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
Hint Extern 0 (?x `prefix_of` ?y) => reflexivity.
Hint Extern 0 (?x `suffix_of` ?y) => reflexivity.
Section prefix_suffix_ops.
Context `{∀ x y : A, Decision (x = y)}.
Definition max_prefix_of : list A → list A → list A * list A * list A :=
fix go l1 l2 :=
match l1, l2 with
| [], l2 => ([], l2, [])
| l1, [] => (l1, [], [])
| x1 :: l1, x2 :: l2 =>
Robbert Krebbers
committed
if decide_rel (=) x1 x2
then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
end.
Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
match max_prefix_of (reverse l1) (reverse l2) with
| (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
end.
Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
End prefix_suffix_ops.
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
| sublist_nil : sublist [] []
Robbert Krebbers
committed
| sublist_skip x l1 l2 : sublist l1 l2 → sublist (x :: l1) (x :: l2)
| sublist_cons x l1 l2 : sublist l1 l2 → sublist l1 (x :: l2).
Robbert Krebbers
committed
Infix "`sublist`" := sublist (at level 70) : C_scope.
Hint Extern 0 (?x `sublist` ?y) => reflexivity.
Robbert Krebbers
committed
(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
from [l1] while possiblity changing the order. *)
Robbert Krebbers
committed
Inductive contains {A} : relation (list A) :=
| contains_nil : contains [] []
| contains_skip x l1 l2 : contains l1 l2 → contains (x :: l1) (x :: l2)
| contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
| contains_cons x l1 l2 : contains l1 l2 → contains l1 (x :: l2)
Robbert Krebbers
committed
| contains_trans l1 l2 l3 : contains l1 l2 → contains l2 l3 → contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
Hint Extern 0 (?x `contains` ?y) => reflexivity.
Robbert Krebbers
committed
Section contains_dec_help.
Context {A} {dec : ∀ x y : A, Decision (x = y)}.
Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
match l with
| [] => None
| y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
end.
Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
match k with
| [] => Some l | x :: k => list_remove x l ≫= list_remove_list k
Robbert Krebbers
committed
end.
End contains_dec_help.
Inductive Forall3 {A B C} (P : A → B → C → Prop) :
list A → list B → list C → Prop :=
| Forall3_nil : Forall3 P [] [] []
| Forall3_cons x y z l k k' :
P x y z → Forall3 P l k k' → Forall3 P (x :: l) (y :: k) (z :: k').
Robbert Krebbers
committed
(** Set operations on lists *)
Section list_set.
Context {A} {dec : ∀ x y : A, Decision (x = y)}.
Global Instance elem_of_list_dec {dec : ∀ x y : A, Decision (x = y)}
(x : A) : ∀ l, Decision (x ∈ l).
Proof.
refine (
fix go l :=
match l return Decision (x ∈ l) with
| [] => right _
| y :: l => cast_if_or (decide (x = y)) (go l)
end); clear go dec; subst; try (by constructor); abstract by inversion 1.
Defined.
Fixpoint remove_dups (l : list A) : list A :=
match l with
| [] => []
| x :: l =>
if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
end.
Fixpoint list_difference (l k : list A) : list A :=
match l with
| [] => []
| x :: l =>
if decide_rel (∈) x k
then list_difference l k else x :: list_difference l k
Robbert Krebbers
committed
end.
Definition list_union (l k : list A) : list A := list_difference l k ++ k.
Robbert Krebbers
committed
Fixpoint list_intersection (l k : list A) : list A :=
match l with
| [] => []
| x :: l =>
if decide_rel (∈) x k
then x :: list_intersection l k else list_intersection l k
Robbert Krebbers
committed
end.
Definition list_intersection_with (f : A → A → option A) :
list A → list A → list A := fix go l k :=
match l with
| [] => []
| x :: l => foldr (λ y,
match f x y with None => id | Some z => (z ::) end) (go l k) k
end.
End list_set.
(** * Basic tactics on lists *)
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
Tactic Notation "discriminate_list_equality" hyp(H) :=
apply (f_equal length) in H;
Robbert Krebbers
committed
repeat (simpl in H || rewrite app_length in H); exfalso; lia.
Tactic Notation "discriminate_list_equality" :=
Robbert Krebbers
committed
match goal with
| H : @eq (list _) _ _ |- _ => discriminate_list_equality H
end.
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
length l1 = length k1 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
length l2 = length k2 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof.
intros ? Hl. apply app_injective_1; auto.
apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
Robbert Krebbers
committed
Ltac simplify_list_equality :=
repeat match goal with
| _ => progress simplify_equality
| H : _ ++ _ = _ ++ _ |- _ => first
[ apply app_inv_head in H | apply app_inv_tail in H
| apply app_injective_1 in H; [destruct H|done]
| apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers
committed
destruct i; [change (Some x = Some y) in H | discriminate]
end;
try discriminate_list_equality.
Ltac simplify_list_equality' :=
repeat (progress simpl in * || simplify_list_equality).
Robbert Krebbers
committed
(** * General theorems *)
Section general_properties.
Robbert Krebbers
committed
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers
committed
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance: ∀ k, Injective (=) (=) (k ++).
Proof. intros ???. apply app_inv_head. Qed.
Robbert Krebbers
committed
Global Instance: ∀ k, Injective (=) (=) (++ k).
Proof. intros ???. apply app_inv_tail. Qed.
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
Robbert Krebbers
committed
Lemma app_nil l1 l2 : l1 ++ l2 = [] ↔ l1 = [] ∧ l2 = [].
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
Robbert Krebbers
committed
Lemma app_singleton l1 l2 x :
l1 ++ l2 = [x] ↔ l1 = [] ∧ l2 = [x] ∨ l1 = [x] ∧ l2 = [].
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
Robbert Krebbers
committed
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : (∀ i, l1 !! i = l2 !! i) → l1 = l2.
Proof.
revert l2. induction l1; intros [|??] H.
* discriminate (H 0).
* discriminate (H 0).
* f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
Robbert Krebbers
committed
Global Instance list_eq_dec {dec : ∀ x y, Decision (x = y)} : ∀ l k,
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
option_reflect (λ x, l = [x]) (length l ≠ 1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.
Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
Robbert Krebbers
committed
Lemma nil_or_length_pos l : l = [] ∨ length l ≠ 0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length_inv l : length l = 0 → l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
Proof. by destruct i. Qed.
Robbert Krebbers
committed
Lemma lookup_tail l i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_Some l i x : l !! i = Some x → i < length l.
Proof.
revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) → i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l → is_Some (l !! i).
Proof.
revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i) ↔ i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None ↔ length l ≤ i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None → length l ≤ i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l ≤ i → l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_same_length l1 l2 n :
length l2 = n → length l1 = n →
(∀ i x y, i < n → l1 !! i = Some x → l2 !! i = Some y → x = y) → l1 = l2.
intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
* destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
{ rewrite Hlen; eauto using lookup_lt_Some. }
rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
* by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Lemma lookup_app_l l1 l2 i : i < length l1 → (l1 ++ l2) !! i = l1 !! i.
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x → (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Robbert Krebbers
committed
Lemma lookup_app_r l1 l2 i : (l1 ++ l2) !! (length l1 + i) = l2 !! i.
Proof. revert i. induction l1; intros [|i]; simplify_equality'; auto. Qed.
Lemma lookup_app_r_alt l1 l2 i j :
j = length l1 → (l1 ++ l2) !! (j + i) = l2 !! i.
Proof. intros ->. by apply lookup_app_r. Qed.
Robbert Krebbers
committed
Lemma lookup_app_r_Some l1 l2 i x :
l2 !! i = Some x → (l1 ++ l2) !! (length l1 + i) = Some x.
Lemma lookup_app_minus_r l1 l2 i :
length l1 ≤ i → (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. intros. rewrite <-(lookup_app_r l1 l2). f_equal. lia. Qed.
Robbert Krebbers
committed
Lemma lookup_app_inv l1 l2 i x :
(l1 ++ l2) !! i = Some x → l1 !! i = Some x ∨ l2 !! (i - length l1) = Some x.
Proof. revert i. induction l1; intros [|i] ?; simplify_equality'; auto. Qed.
Lemma list_lookup_middle l1 l2 x n :
n = length l1 → (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
Robbert Krebbers
committed
Lemma alter_length f l i : length (alter f i l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
Robbert Krebbers
committed
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
Robbert Krebbers
committed
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Lemma list_lookup_alter_ne f l i j : i ≠ j → alter f i l !! j = l !! j.
revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
Robbert Krebbers
committed
Lemma list_lookup_insert l i x : i < length l → <[i:=x]>l !! i = Some x.
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i ≠ j → <[i:=x]>l !! j = l !! j.
revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
Robbert Krebbers
committed
Lemma list_lookup_other l i x :
length l ≠ 1 → l !! i = Some x → ∃ j y, j ≠ i ∧ l !! j = Some y.
intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
* by exists 1 x1.
* by exists 0 x0.
Qed.
Robbert Krebbers
committed
Lemma alter_app_l f l1 l2 i :
i < length l1 → alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
Robbert Krebbers
committed
Lemma alter_app_r f l1 l2 i :
alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
Robbert Krebbers
committed
Lemma alter_app_r_alt f l1 l2 i :
length l1 ≤ i → alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
rewrite Hi at 1. by apply alter_app_r.
Qed.
Lemma list_alter_ext f g l k i :
(∀ x, l !! i = Some x → f x = g x) → l = k → alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
Lemma list_alter_compose f g l i :
alter (f ∘ g) i l = alter f i (alter g i l).
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
Lemma list_alter_commute f g l i j :
i ≠ j → alter f i (alter g j l) = alter g j (alter f i l).
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
Robbert Krebbers
committed
Lemma insert_app_l l1 l2 i x :
i < length l1 → <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
Robbert Krebbers
committed
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
Robbert Krebbers
committed
Lemma insert_app_r_alt l1 l2 i x :
length l1 ≤ i → <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof.
intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
rewrite Hi at 1. by apply insert_app_r.
Qed.
Robbert Krebbers
committed
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
Proof. induction l1; f_equal'; auto. Qed.
(** ** Properties of the [elem_of] predicate *)
Robbert Krebbers
committed
Lemma not_elem_of_nil x : x ∉ [].
Robbert Krebbers
committed
Lemma elem_of_nil x : x ∈ [] ↔ False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Robbert Krebbers
committed
Lemma elem_of_nil_inv l : (∀ x, x ∉ l) → l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Lemma elem_of_not_nil x l : x ∈ l → l ≠ [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
Robbert Krebbers
committed
Lemma elem_of_cons l x y : x ∈ y :: l ↔ x = y ∨ x ∈ l.
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
Robbert Krebbers
committed
Lemma not_elem_of_cons l x y : x ∉ y :: l ↔ x ≠ y ∧ x ∉ l.
Robbert Krebbers
committed
Lemma elem_of_app l1 l2 x : x ∈ l1 ++ l2 ↔ x ∈ l1 ∨ x ∈ l2.
Robbert Krebbers
committed
* split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
* simpl. rewrite !elem_of_cons, IHl1. tauto.
Robbert Krebbers
committed
Lemma not_elem_of_app l1 l2 x : x ∉ l1 ++ l2 ↔ x ∉ l1 ∧ x ∉ l2.
Robbert Krebbers
committed
Lemma elem_of_list_singleton x y : x ∈ [y] ↔ x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Global Instance elem_of_list_permutation_proper x : Proper ((≡ₚ) ==> iff) (x ∈).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Robbert Krebbers
committed
Lemma elem_of_list_split l x : x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2.
induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
by exists (y :: l1) l2.
Robbert Krebbers
committed
Lemma elem_of_list_lookup_1 l x : x ∈ l → ∃ i, l !! i = Some x.
Robbert Krebbers
committed
induction 1 as [|???? IH]; [by exists 0 |].
destruct IH as [i ?]; auto. by exists (S i).
Robbert Krebbers
committed
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x → x ∈ l.
revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
Robbert Krebbers
committed
Lemma elem_of_list_lookup l x : x ∈ l ↔ ∃ i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
Lemma elem_of_list_omap {B} (f : A → option B) l (y : B) :
y ∈ omap f l ↔ ∃ x, x ∈ l ∧ f x = Some y.
Proof.
split.
* induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
setoid_rewrite elem_of_cons; naive_solver.
* intros (x&Hx&?). induction Hx; csimpl; repeat case_match;
simplify_equality; auto; constructor (by auto).
Qed.
Robbert Krebbers
committed
(** ** Properties of the [NoDup] predicate *)
Lemma NoDup_nil : NoDup (@nil A) ↔ True.
Proof. split; constructor. Qed.
Robbert Krebbers
committed
Lemma NoDup_cons x l : NoDup (x :: l) ↔ x ∉ l ∧ NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Robbert Krebbers
committed
Lemma NoDup_cons_11 x l : NoDup (x :: l) → x ∉ l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Robbert Krebbers
committed
Lemma NoDup_cons_12 x l : NoDup (x :: l) → NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Robbert Krebbers
committed
Lemma NoDup_singleton x : NoDup [x].
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
Robbert Krebbers
committed
Lemma NoDup_app l k : NoDup (l ++ k) ↔ NoDup l ∧ (∀ x, x ∈ l → x ∉ k) ∧ NoDup k.
Robbert Krebbers
committed
* rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers
committed
Global Instance NoDup_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
Proof.
induction 1 as [|x l k Hlk IH | |].
* by rewrite !NoDup_nil.
* by rewrite !NoDup_cons, IH, Hlk.
* rewrite !NoDup_cons, !elem_of_cons. intuition.
* intuition.
Qed.
Lemma NoDup_lookup l i j x :
NoDup l → l !! i = Some x → l !! j = Some x → i = j.
Proof.
intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
{ intros; simplify_equality. }
intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
exfalso; eauto using elem_of_list_lookup_2.
Qed.
Lemma NoDup_alt l :
NoDup l ↔ ∀ i j x, l !! i = Some x → l !! j = Some x → i = j.
split; eauto using NoDup_lookup.
induction l as [|x l IH]; intros Hl; constructor.
* rewrite elem_of_list_lookup. intros [i ?].
by feed pose proof (Hl (S i) 0 x); auto.
* apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
Robbert Krebbers
committed
Section no_dup_dec.
Context `{!∀ x y, Decision (x = y)}.
Global Instance NoDup_dec: ∀ l, Decision (NoDup l) :=
fix NoDup_dec l :=
match l return Decision (NoDup l) with
| [] => left NoDup_nil_2
Robbert Krebbers
committed
match decide_rel (∈) x l with
| left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
| right Hin =>
match NoDup_dec l with
| left H => left (NoDup_cons_2 _ _ Hin H)
| right H => right (H ∘ NoDup_cons_12 _ _)
end
end
Robbert Krebbers
committed
Lemma elem_of_remove_dups l x : x ∈ remove_dups l ↔ x ∈ l.
Proof.
split; induction l; simpl; repeat case_decide;
rewrite ?elem_of_cons; intuition (simplify_equality; auto).
Qed.
Lemma NoDup_remove_dups l : NoDup (remove_dups l).
Proof.
induction l; simpl; repeat case_decide; try constructor; auto.
by rewrite elem_of_remove_dups.
Qed.
Robbert Krebbers
committed
End no_dup_dec.
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
(** ** Set operations on lists *)
Section list_set.
Context {dec : ∀ x y, Decision (x = y)}.
Lemma elem_of_list_difference l k x : x ∈ list_difference l k ↔ x ∈ l ∧ x ∉ k.
Proof.
split; induction l; simpl; try case_decide;
rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
Qed.
Lemma NoDup_list_difference l k : NoDup l → NoDup (list_difference l k).
Proof.
induction 1; simpl; try case_decide.
* constructor.
* done.
* constructor. rewrite elem_of_list_difference; intuition. done.
Qed.
Lemma elem_of_list_union l k x : x ∈ list_union l k ↔ x ∈ l ∨ x ∈ k.
Proof.
unfold list_union. rewrite elem_of_app, elem_of_list_difference.
intuition. case (decide (x ∈ k)); intuition.
Qed.
Lemma NoDup_list_union l k : NoDup l → NoDup k → NoDup (list_union l k).
Proof.
intros. apply NoDup_app. repeat split.
* by apply NoDup_list_difference.
* intro. rewrite elem_of_list_difference. intuition.
* done.
Qed.
Lemma elem_of_list_intersection l k x :
x ∈ list_intersection l k ↔ x ∈ l ∧ x ∈ k.
Proof.
split; induction l; simpl; repeat case_decide;
rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
Qed.
Lemma NoDup_list_intersection l k : NoDup l → NoDup (list_intersection l k).
Proof.
induction 1; simpl; try case_decide.
* constructor.
* constructor. rewrite elem_of_list_intersection; intuition. done.
* done.
Qed.
Lemma elem_of_list_intersection_with f l k x :
x ∈ list_intersection_with f l k ↔ ∃ x1 x2,
x1 ∈ l ∧ x2 ∈ k ∧ f x1 x2 = Some x.
Proof.
split.
* induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
intros Hx. setoid_rewrite elem_of_cons.
cut ((∃ x2, x2 ∈ k ∧ f x1 x2 = Some x)
∨ x ∈ list_intersection_with f l k); [naive_solver|].
clear IH. revert Hx. generalize (list_intersection_with f l k).
induction k; simpl; [by auto|].
case_match; setoid_rewrite elem_of_cons; naive_solver.
* intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
+ generalize (list_intersection_with f l k).
induction Hx2; simpl; [by rewrite Hx; left |].
case_match; simpl; try setoid_rewrite elem_of_cons; auto.
+ generalize (IH Hx). clear Hx IH Hx2.
generalize (list_intersection_with f l k).
induction k; simpl; intros; [done|].
case_match; simpl; rewrite ?elem_of_cons; auto.
Qed.
End list_set.
(** ** Properties of the [filter] function *)
Robbert Krebbers
committed
Section filter.
Context (P : A → Prop) `{∀ x, Decision (P x)}.
Lemma elem_of_list_filter l x : x ∈ filter P l ↔ P x ∧ x ∈ l.
Proof.
unfold filter. induction l; simpl; repeat case_decide;
rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
Qed.
Lemma NoDup_filter l : NoDup l → NoDup (filter P l).
Robbert Krebbers
committed
Proof.
unfold filter. induction 1; simpl; repeat case_decide;
rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
Qed.
End filter.
(** ** Properties of the [find] function *)
Section find.
Context (P : A → Prop) `{∀ x, Decision (P x)}.
Lemma list_find_Some l i :
list_find P l = Some i → ∃ x, l !! i = Some x ∧ P x.
revert i. induction l; intros [] ?; simplify_option_equality; eauto.
Qed.
Lemma list_find_elem_of l x : x ∈ l → P x → ∃ i, list_find P l = Some i.
Proof.
induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
by destruct IH as [i ->]; [|exists (S i)].
Qed.
End find.
Section find_eq.
Context `{∀ x y, Decision (x = y)}.
Lemma list_find_eq_Some l i x : list_find (x =) l = Some i → l !! i = Some x.
Proof.
intros.
destruct (list_find_Some (x =) l i) as (?&?&?); auto with congruence.
Qed.
Lemma list_find_eq_elem_of l x : x ∈ l → ∃ i, list_find (x=) l = Some i.
Proof. eauto using list_find_elem_of. Qed.
End find_eq.
(** ** Properties of the [reverse] function *)
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
Robbert Krebbers
committed
Lemma reverse_singleton x : reverse [x] = [x].
Proof. done. Qed.
Robbert Krebbers
committed
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Robbert Krebbers
committed
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Robbert Krebbers
committed
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Robbert Krebbers
committed
Lemma reverse_length l : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Robbert Krebbers
committed
Lemma reverse_involutive l : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
Lemma elem_of_reverse_2 x l : x ∈ l → x ∈ reverse l.
Proof.
induction 1; rewrite reverse_cons, elem_of_app,
?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x ∈ reverse l ↔ x ∈ l.
Proof.
split; auto using elem_of_reverse_2.
intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Global Instance: Injective (=) (=) (@reverse A).
Proof.
intros l1 l2 Hl.
by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
Robbert Krebbers
committed
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
l !! i = Some x → take i l ++ x :: drop (S i) l = l.
Proof.
revert i x. induction l; intros [|?] ??; simplify_equality'; f_equal; auto.
Qed.
Robbert Krebbers
committed
Lemma take_nil n : take n (@nil A) = [].
Robbert Krebbers
committed
Lemma take_app l k : take (length l) (l ++ k) = l.
Proof. induction l; f_equal'; auto. Qed.
Robbert Krebbers
committed
Lemma take_app_alt l k n : n = length l → take n (l ++ k) = l.
Proof. intros Hn. by rewrite Hn, take_app. Qed.
Robbert Krebbers
committed
Lemma take_app_le l k n : n ≤ length l → take n (l ++ k) = take n l.
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma take_plus_app l k n m :
length l = n → take (n + m) (l ++ k) = l ++ take m k.
Proof. intros <-. induction l; f_equal'; auto. Qed.
Robbert Krebbers
committed
Lemma take_app_ge l k n :
length l ≤ n → take n (l ++ k) = l ++ take (n - length l) k.
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Robbert Krebbers
committed
Lemma take_ge l n : length l ≤ n → take n l = l.
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Robbert Krebbers
committed
Lemma take_take l n m : take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal'; auto. Qed.
Robbert Krebbers
committed
Lemma take_idempotent l n : take n (take n l) = take n l.
Proof. by rewrite take_take, Min.min_idempotent. Qed.
Robbert Krebbers
committed
Lemma take_length l n : length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; f_equal'; done. Qed.
Lemma take_length_le l n : n ≤ length l → length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.
Lemma take_length_ge l n : length l ≤ n → length (take n l) = length l.
Proof. rewrite take_length. apply Min.min_r. Qed.
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Lemma lookup_take l n i : i < n → take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
Robbert Krebbers
committed
Lemma lookup_take_ge l n i : n ≤ i → take n l !! i = None.
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
Robbert Krebbers
committed
Lemma take_alter f l n i : n ≤ i → take n (alter f i l) = take n l.
Proof.
intros. apply list_eq. intros j. destruct (le_lt_dec n j).
* by rewrite !lookup_take_ge.
* by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Robbert Krebbers
committed
Lemma take_insert l n i x : n ≤ i → take n (<[i:=x]>l) = take n l.
Proof.
intros. apply list_eq. intros j. destruct (le_lt_dec n j).
* by rewrite !lookup_take_ge.
* by rewrite !lookup_take, !list_lookup_insert_ne by lia.
Qed.
(** ** Properties of the [drop] function *)
Lemma drop_0 l : drop 0 l = l.
Proof. done. Qed.
Robbert Krebbers
committed
Lemma drop_nil n : drop n (@nil A) = [].
Robbert Krebbers
committed
Lemma drop_length l n : length (drop n l) = length l - n.
Proof. revert n. by induction l; intros [|i]; f_equal'. Qed.
Lemma drop_ge l n : length l ≤ n → drop n l = [].
Proof. revert n. induction l; intros [|??]; simpl in *; auto with lia. Qed.
Robbert Krebbers
committed
Lemma drop_all l : drop (length l) l = [].
Lemma drop_drop l n1 n2 : drop n1 (drop n2 l) = drop (n2 + n1) l.
Proof. revert n2. induction l; intros [|?]; simpl; rewrite ?drop_nil; auto. Qed.
Lemma drop_app_le l k n :
n ≤ length l → drop n (l ++ k) = drop n l ++ k.
Proof. revert n. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma drop_app l k : drop (length l) (l ++ k) = k.
Proof. by rewrite drop_app_le, drop_all. Qed.
Lemma drop_app_alt l k n : n = length l → drop n (l ++ k) = k.
Proof. intros ->. by apply drop_app. Qed.
Lemma drop_app_ge l k n :
length l ≤ n → drop n (l ++ k) = drop (n - length l) k.
Proof.
intros. rewrite <-(Nat.sub_add (length l) n) at 1 by done.
by rewrite Nat.add_comm, <-drop_drop, drop_app.
Qed.
Robbert Krebbers
committed
Lemma lookup_drop l n i : drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Robbert Krebbers
committed
Lemma drop_alter f l n i : i < n → drop n (alter f i l) = drop n l.
Proof.
intros. apply list_eq. intros j.
by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Robbert Krebbers
committed
Lemma drop_insert l n i x : i < n → drop n (<[i:=x]>l) = drop n l.
Proof.
intros. apply list_eq. intros j.
by rewrite !lookup_drop, !list_lookup_insert_ne by lia.
Qed.
Robbert Krebbers
committed
Lemma delete_take_drop l i : delete i l = take i l ++ drop (S i) l.
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
(** ** Properties of the [replicate] function *)
Robbert Krebbers
committed
Lemma replicate_length n x : length (replicate n x) = n.
Robbert Krebbers
committed
Lemma lookup_replicate n x i : i < n → replicate n x !! i = Some x.
Proof. revert i. induction n; intros [|?]; naive_solver auto with lia. Qed.
Lemma lookup_replicate_inv n x y i :
replicate n x !! i = Some y → y = x ∧ i < n.
Robbert Krebbers
committed
Proof. revert i. induction n; intros [|?]; naive_solver auto with lia. Qed.
Lemma lookup_replicate_None n x i : n ≤ i ↔ replicate n x !! i = None.
Proof.
rewrite eq_None_not_Some, Nat.le_ngt. split.
* intros Hin [x' Hx']; destruct Hin.
by destruct (lookup_replicate_inv n x x' i).
* intros Hx ?. destruct Hx. exists x; auto using lookup_replicate.
Qed.
Lemma elem_of_replicate_inv x n y : x ∈ replicate n y → x = y.
Proof. induction n; simpl; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Robbert Krebbers
committed
Lemma replicate_S n x : replicate (S n) x = x :: replicate n x.
Proof. done. Qed.
Robbert Krebbers
committed
Lemma replicate_plus n m x :
replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; f_equal'; auto. Qed.
Robbert Krebbers
committed
Lemma take_replicate n m x : take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; f_equal'. Qed.
Robbert Krebbers
committed
Lemma take_replicate_plus n m x : take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Robbert Krebbers
committed
Lemma drop_replicate n m x : drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; f_equal'. Qed.
Robbert Krebbers
committed
Lemma drop_replicate_plus n m x : drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.
replicate n x = l ↔ length l = n ∧ ∀ y, y ∈ l → y = x.
split; [intros <-; eauto using elem_of_replicate_inv, replicate_length|].
intros [<- Hl]. symmetry. induction l as [|y l IH]; f_equal'.
* apply Hl. by left.
* apply IH. intros ??. apply Hl. by right.
Robbert Krebbers
committed
Lemma reverse_replicate n x : reverse (replicate n x) = replicate n x.
symmetry. apply replicate_as_elem_of.
rewrite reverse_length, replicate_length. split; auto.
intros y. rewrite elem_of_reverse. by apply elem_of_replicate_inv.
Lemma replicate_false βs n : length βs = n → replicate n false =.>* βs.
Proof. intros <-. by induction βs; simpl; constructor. Qed.
(** ** Properties of the [resize] function *)
Robbert Krebbers
committed
Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
Proof. revert n. induction l; intros [|?]; f_equal'; auto. Qed.
Robbert Krebbers
committed
Lemma resize_0 l x : resize 0 x l = [].
Robbert Krebbers
committed
Lemma resize_nil n x : resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. f_equal'. lia. Qed.
Robbert Krebbers
committed
Lemma resize_ge l n x :
length l ≤ n → resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Robbert Krebbers
committed
Lemma resize_le l n x : n ≤ length l → resize n x l = take n l.
intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
Robbert Krebbers
committed
simpl. by rewrite (right_id_L [] (++)).
Robbert Krebbers
committed
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Robbert Krebbers
committed
Lemma resize_all_alt l n x : n = length l → resize n x l = l.
Proof. intros ->. by rewrite resize_all. Qed.
Robbert Krebbers
committed
Lemma resize_plus l n m x :
resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
revert n m. induction l; intros [|?] [|?]; f_equal'; auto.
* by rewrite Nat.add_0_r, (right_id_L [] (++)).
Robbert Krebbers
committed
Lemma resize_plus_eq l n m x :
length l = n → resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_plus, resize_all, drop_all, resize_nil. Qed.
Robbert Krebbers
committed
Lemma resize_app_le l1 l2 n x :
n ≤ length l1 → resize n x (l1 ++ l2) = resize n x l1.
Robbert Krebbers
committed
intros. by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Lemma resize_app l1 l2 n x : n = length l1 → resize n x (l1 ++ l2) = l1.
Proof. intros ->. by rewrite resize_app_le, resize_all. Qed.
Robbert Krebbers
committed
Lemma resize_app_ge l1 l2 n x :
length l1 ≤ n → resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Robbert Krebbers
committed
intros. rewrite !resize_spec, take_app_ge, (associative_L (++)) by done.
do 2 f_equal. rewrite app_length. lia.
Qed.
Robbert Krebbers
committed
Lemma resize_length l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, app_length, replicate_length, take_length. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; f_equal'; auto. Qed.
Robbert Krebbers
committed
Lemma resize_resize l n m x : n ≤ m → resize n x (resize m x l) = resize n x l.
Proof.
revert n m. induction l; simpl.
* intros. by rewrite !resize_nil, resize_replicate.
* intros [|?] [|?] ?; f_equal'; auto with lia.
Robbert Krebbers
committed
Lemma resize_idempotent l n x : resize n x (resize n x l) = resize n x l.
Robbert Krebbers
committed
Lemma resize_take_le l n m x : n ≤ m → resize n x (take m l) = resize n x l.
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
Robbert Krebbers
committed
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Robbert Krebbers
committed
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
revert n m. induction l; intros [|?][|?]; f_equal'; auto using take_replicate.
Robbert Krebbers
committed
Lemma take_resize_le l n m x : n ≤ m → take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Robbert Krebbers
committed
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Robbert Krebbers
committed
Lemma take_resize_plus l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Robbert Krebbers
committed
Lemma drop_resize_le l n m x :
n ≤ m → drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
revert n m. induction l; simpl.
* intros. by rewrite drop_nil, !resize_nil, drop_replicate.
* intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Robbert Krebbers
committed
Lemma drop_resize_plus l n m x :
drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n → i < length l → resize n x l !! i = l !! i.
Proof.
intros ??. destruct (decide (n < length l)).
* by rewrite resize_le, lookup_take by lia.
* by rewrite resize_ge, lookup_app_l by lia.
Qed.
Lemma lookup_resize_new l n x i :
length l ≤ i → i < n → resize n x l !! i = Some x.
Proof.
intros ??. rewrite resize_ge by lia.
replace i with (length l + (i - length l)) by lia.
by rewrite lookup_app_r, lookup_replicate by lia.
Qed.
Lemma lookup_resize_old l n x i : n ≤ i → resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite resize_length. Qed.
Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
(** ** Properties of the [reshape] function *)
Lemma reshape_length szs l : length (reshape szs l) = length szs.
Proof. revert l. by induction szs; intros; f_equal'. Qed.
Lemma join_reshape szs l :
sum_list szs = length l → mjoin (reshape szs l) = l.
Proof.
revert l. induction szs as [|sz szs IH]; simpl; intros l Hl; [by destruct l|].
by rewrite IH, take_drop by (rewrite drop_length; lia).
Qed.
Lemma sum_list_replicate n m : sum_list (replicate m n) = m * n.
Proof. induction m; simpl; auto. Qed.
(** ** Properties of [sublist_lookup] and [sublist_alter] *)
Lemma sublist_lookup_length l i n k :
sublist_lookup i n l = Some k → length k = n.
unfold sublist_lookup; intros; simplify_option_equality.
rewrite take_length, drop_length; lia.
Lemma sublist_lookup_all l n : length l = n → sublist_lookup 0 n l = Some l.
Proof.
intros. unfold sublist_lookup; case_option_guard; [|lia].
by rewrite take_ge by (rewrite drop_length; lia).
Qed.
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
Lemma sublist_lookup_Some l i n :
i + n ≤ length l → sublist_lookup i n l = Some (take n (drop i l)).
Proof. by unfold sublist_lookup; intros; simplify_option_equality. Qed.
Lemma sublist_lookup_None l i n :
length l < i + n → sublist_lookup i n l = None.
Proof. by unfold sublist_lookup; intros; simplify_option_equality by lia. Qed.
Lemma sublist_eq l k n :
(n | length l) → (n | length k) →
(∀ i, sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
revert l k. assert (∀ l i,
n ≠ 0 → (n | length l) → ¬n * i `div` n + n ≤ length l → length l ≤ i).
{ intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
{ by rewrite (nil_length_inv l),
(nil_length_inv k) by eauto using Nat.divide_0_l. }
apply list_eq; intros i. specialize (Hlookup (i `div` n)).
rewrite (Nat.mul_comm _ n) in Hlookup.
unfold sublist_lookup in *; simplify_option_equality;
[|by rewrite !lookup_ge_None_2 by auto].
apply (f_equal (!! i `mod` n)) in Hlookup.
by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
length l = j * n → length k = j * n →
(∀ i,i < j → sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
{ by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
apply sublist_eq with n; [by exists j|by exists j|].
intros i. destruct (decide (i < j)); [by auto|].
assert (∀ m, m = j * n → m < i * n + n).
{ intros ? ->. replace (i * n + n) with (S i * n) by lia.
apply Nat.mul_lt_mono_pos_r; lia. }
by rewrite !sublist_lookup_None by auto.
Lemma sublist_lookup_reshape l i n m :
0 < n → length l = m * n →
reshape (replicate m n) l !! i = sublist_lookup (i * n) n l.
intros Hn Hl. unfold sublist_lookup. apply option_eq; intros x; split.
* intros Hx. case_option_guard as Hi.
{ f_equal. clear Hi. revert i l Hl Hx.
induction m as [|m IH]; intros [|i] l ??; simplify_equality'; auto.
rewrite <-drop_drop. apply IH; rewrite ?drop_length; auto with lia. }
destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
by rewrite reshape_length, replicate_length in Hx.
* intros Hx. case_option_guard as Hi; simplify_equality'.
revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
rewrite IH; rewrite ?drop_length; auto with lia.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
sublist_lookup i n l1 = Some l2 → sublist_lookup j m l2 = Some l3 →
sublist_lookup (i + j) m l1 = Some l3.
Proof.
unfold sublist_lookup; intros; simplify_option_equality;
repeat match goal with
| H : _ ≤ length _ |- _ => rewrite take_length, drop_length in H
end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
?Min.min_l, Nat.add_assoc by lia; auto with lia.
Lemma sublist_alter_length f l i n k :
sublist_lookup i n l = Some k → length (f k) = n →
length (sublist_alter f i n l) = length l.
Proof.
unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_equality.
rewrite !app_length, Hk, !take_length, !drop_length; lia.
Lemma sublist_lookup_alter f l i n k :
sublist_lookup i n l = Some k → length (f k) = n →
sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup. intros Hk ?. erewrite sublist_alter_length by eauto.
unfold sublist_alter; simplify_option_equality.
by rewrite Hk, drop_app_alt, take_app_alt by (rewrite ?take_length; lia).
Lemma sublist_lookup_alter_ne f l i j n k :
sublist_lookup j n l = Some k → length (f k) = n → i + n ≤ j ∨ j + n ≤ i →
sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
unfold sublist_lookup. intros Hk Hi ?. erewrite sublist_alter_length by eauto.
unfold sublist_alter; simplify_option_equality; f_equal; rewrite Hk.
apply list_eq; intros ii.
destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
{ by rewrite lookup_app_l, lookup_take by (rewrite ?take_length; lia). }
rewrite lookup_app_minus_r by (rewrite take_length; lia).
rewrite take_length_le, lookup_app_minus_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n → sublist_alter f 0 n l = f l.
Proof.
intros <-. unfold sublist_alter; simpl.
by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
sublist_lookup i n l = Some k → length (f k) = n → length (g k) = n →
sublist_alter (f ∘ g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_equality.
by rewrite !take_app_alt, drop_app_alt, !(associative_L (++)), drop_app_alt,
take_app_alt by (rewrite ?app_length, ?take_length, ?Hk; lia).
Qed.
(** ** Properties of the [mask] function *)
Lemma mask_nil f βs : mask f βs (@nil A) = [].
Proof. by destruct βs. Qed.
Lemma mask_length f βs l : length (mask f βs l) = length l.
Proof. revert βs. induction l; intros [|??]; f_equal'; auto. Qed.
Lemma mask_true f l n : length l ≤ n → mask f (replicate n true) l = f <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma mask_false f l n : mask f (replicate n false) l = l.
Proof. revert l. induction n; intros [|??]; f_equal'; auto. Qed.
Lemma mask_app f βs1 βs2 l :
mask f (βs1 ++ βs2) l
= mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
Proof. revert l. induction βs1;intros [|??]; f_equal'; auto using mask_nil. Qed.
Lemma take_mask f βs l n : take n (mask f βs l) = mask f (take n βs) (take n l).
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal'; auto. Qed.
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
revert n βs. induction l; intros [|?] [|[] ?]; f_equal'; auto using mask_nil.
Qed.
Lemma sublist_lookup_mask f βs l i n :
sublist_lookup i n (mask f βs l)
= mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup; rewrite mask_length; simplify_option_equality; auto.
by rewrite drop_mask, take_mask.
Lemma mask_mask f g βs1 βs2 l :
(∀ x, f (g x) = f x) → βs1 =.>* βs2 →
mask f βs2 (mask g βs1 l) = mask f βs2 l.
Proof.
intros ? Hβs. revert l. by induction Hβs as [|[] []]; intros [|??]; f_equal'.
Qed.
(** ** Properties of the [seq] function *)
Lemma fmap_seq j n : S <$> seq j n = seq (S j) n.
Proof. revert j. induction n; intros; f_equal'; auto. Qed.
Lemma lookup_seq j n i : i < n → seq j n !! i = Some (j + i).
Proof.
revert j i. induction n as [|n IH]; intros j [|i] ?; simpl; auto with lia.
rewrite IH; auto with lia.
Qed.
Lemma lookup_seq_ge j n i : n ≤ i → seq j n !! i = None.
Proof. revert j i. induction n; intros j [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_seq_inv j n i j' : seq j n !! i = Some j' → j' = j + i ∧ i < n.
Proof.
destruct (le_lt_dec n i); [by rewrite lookup_seq_ge|].
rewrite lookup_seq by done. intuition congruence.
Robbert Krebbers
committed
(** ** Properties of the [Permutation] predicate *)
Lemma Permutation_nil l : l ≡ₚ [] ↔ l = [].
Proof. split. by intro; apply Permutation_nil. by intros ->. Qed.
Robbert Krebbers
committed
Lemma Permutation_singleton l x : l ≡ₚ [x] ↔ l = [x].
Proof. split. by intro; apply Permutation_length_1_inv. by intros ->. Qed.
Robbert Krebbers
committed
Definition Permutation_skip := @perm_skip A.
Definition Permutation_swap := @perm_swap A.
Definition Permutation_singleton_inj := @Permutation_length_1 A.
Global Existing Instance Permutation_app'_Proper.
Global Instance: Proper ((≡ₚ) ==> (=)) (@length A).
Proof. induction 1; simpl; auto with lia. Qed.
Global Instance: Commutative (≡ₚ) (@app A).
Robbert Krebbers
committed
intros l1. induction l1 as [|x l1 IH]; intros l2; simpl.
* by rewrite (right_id_L [] (++)).
* rewrite Permutation_middle, IH. simpl. by rewrite Permutation_middle.
Robbert Krebbers
committed
Global Instance: ∀ x : A, Injective (≡ₚ) (≡ₚ) (x ::).
Proof. red. eauto using Permutation_cons_inv. Qed.
Global Instance: ∀ k : list A, Injective (≡ₚ) (≡ₚ) (k ++).
Robbert Krebbers
committed
red. induction k as [|x k IH]; intros l1 l2; simpl; auto.
intros. by apply IH, (injective (x ::)).
Robbert Krebbers
committed
Global Instance: ∀ k : list A, Injective (≡ₚ) (≡ₚ) (++ k).
intros k l1 l2. rewrite !(commutative (++) _ k). by apply (injective (k ++)).
Lemma replicate_Permutation n x l : replicate n x ≡ₚ l → replicate n x = l.
Proof.
intros Hl. apply replicate_as_elem_of. split.
* by rewrite <-Hl, replicate_length.
* intros y. rewrite <-Hl. by apply elem_of_replicate_inv.
Qed.
Lemma reverse_Permutation l : reverse l ≡ₚ l.
Proof.
induction l as [|x l IH]; [done|].
by rewrite reverse_cons, (commutative (++)), IH.
Qed.
Robbert Krebbers
committed
(** ** Properties of the [prefix_of] and [suffix_of] predicates *)
Global Instance: PreOrder (@prefix_of A).
Proof.
split.
Robbert Krebbers
committed
* intros ?. eexists []. by rewrite (right_id_L [] (++)).
* intros ???[k1->] [k2->]. exists (k1 ++ k2). by rewrite (associative_L (++)).
Robbert Krebbers
committed
Lemma prefix_of_nil l : [] `prefix_of` l.
Proof. by exists l. Qed.
Lemma prefix_of_nil_not x l : ¬x :: l `prefix_of` [].
Proof. by intros [k ?]. Qed.
Robbert Krebbers
committed
Lemma prefix_of_cons x l1 l2 : l1 `prefix_of` l2 → x :: l1 `prefix_of` x :: l2.
Proof. intros [k ->]. by exists k. Qed.
Robbert Krebbers
committed
Lemma prefix_of_cons_alt x y l1 l2 :
x = y → l1 `prefix_of` l2 → x :: l1 `prefix_of` y :: l2.
Proof. intros ->. apply prefix_of_cons. Qed.
Robbert Krebbers
committed
Lemma prefix_of_cons_inv_1 x y l1 l2 : x :: l1 `prefix_of` y :: l2 → x = y.
Proof. by intros [k ?]; simplify_equality'. Qed.
Robbert Krebbers
committed
Lemma prefix_of_cons_inv_2 x y l1 l2 :
x :: l1 `prefix_of` y :: l2 → l1 `prefix_of` l2.
Proof. intros [k ?]; simplify_equality. by exists k. Qed.
Robbert Krebbers
committed
Lemma prefix_of_app k l1 l2 : l1 `prefix_of` l2 → k ++ l1 `prefix_of` k ++ l2.
Proof. intros [k' ->]. exists k'. by rewrite (associative_L (++)). Qed.
Robbert Krebbers
committed
Lemma prefix_of_app_alt k1 k2 l1 l2 :
k1 = k2 → l1 `prefix_of` l2 → k1 ++ l1 `prefix_of` k2 ++ l2.
Proof. intros ->. apply prefix_of_app. Qed.
Robbert Krebbers
committed
Lemma prefix_of_app_l l1 l2 l3 : l1 ++ l3 `prefix_of` l2 → l1 `prefix_of` l2.
Proof. intros [k ->]. exists (l3 ++ k). by rewrite (associative_L (++)). Qed.
Robbert Krebbers
committed
Lemma prefix_of_app_r l1 l2 l3 : l1 `prefix_of` l2 → l1 `prefix_of` l2 ++ l3.
Proof. intros [k ->]. exists (k ++ l3). by rewrite (associative_L (++)). Qed.
Robbert Krebbers
committed
Lemma prefix_of_length l1 l2 : l1 `prefix_of` l2 → length l1 ≤ length l2.
Proof. intros [? ->]. rewrite app_length. lia. Qed.
Robbert Krebbers
committed
Lemma prefix_of_snoc_not l x : ¬l ++ [x] `prefix_of` l.
Proof. intros [??]. discriminate_list_equality. Qed.
Global Instance: PreOrder (@suffix_of A).
Proof.
split.
Robbert Krebbers
committed
* intros ?. by eexists [].
* intros ???[k1->] [k2->]. exists (k2 ++ k1). by rewrite (associative_L (++)).
Robbert Krebbers
committed
Global Instance prefix_of_dec `{∀ x y, Decision (x = y)} : ∀ l1 l2,
Decision (l1 `prefix_of` l2) := fix go l1 l2 :=
Robbert Krebbers
committed
match l1, l2 return { l1 `prefix_of` l2 } + { ¬l1 `prefix_of` l2 } with
| [], _ => left (prefix_of_nil _)
| _, [] => right (prefix_of_nil_not _ _)
| x :: l1, y :: l2 =>
match decide_rel (=) x y with
Robbert Krebbers
committed
match go l1 l2 with
| left Hl1l2 => left (prefix_of_cons_alt _ _ _ _ Hxy Hl1l2)
Robbert Krebbers
committed
| right Hl1l2 => right (Hl1l2 ∘ prefix_of_cons_inv_2 _ _ _ _)
end
| right Hxy => right (Hxy ∘ prefix_of_cons_inv_1 _ _ _ _)
Robbert Krebbers
committed
end
end.
Robbert Krebbers
committed
Section prefix_ops.
Context `{∀ x y, Decision (x = y)}.
Lemma max_prefix_of_fst l1 l2 :
l1 = (max_prefix_of l1 l2).2 ++ (max_prefix_of l1 l2).1.1.
Robbert Krebbers
committed
Proof.
revert l2. induction l1; intros [|??]; simpl;
repeat case_decide; f_equal'; auto.
Robbert Krebbers
committed
Qed.
Lemma max_prefix_of_fst_alt l1 l2 k1 k2 k3 :
max_prefix_of l1 l2 = (k1, k2, k3) → l1 = k3 ++ k1.
Proof.
intros. pose proof (max_prefix_of_fst l1 l2).
Robbert Krebbers
committed
by destruct (max_prefix_of l1 l2) as [[]?]; simplify_equality.
Qed.
Lemma max_prefix_of_fst_prefix l1 l2 : (max_prefix_of l1 l2).2 `prefix_of` l1.
Robbert Krebbers
committed
Proof. eexists. apply max_prefix_of_fst. Qed.
Lemma max_prefix_of_fst_prefix_alt l1 l2 k1 k2 k3 :
max_prefix_of l1 l2 = (k1, k2, k3) → k3 `prefix_of` l1.
Proof. eexists. eauto using max_prefix_of_fst_alt. Qed.
Lemma max_prefix_of_snd l1 l2 :
l2 = (max_prefix_of l1 l2).2 ++ (max_prefix_of l1 l2).1.2.
Robbert Krebbers
committed
Proof.
revert l2. induction l1; intros [|??]; simpl;
repeat case_decide; f_equal'; auto.
Robbert Krebbers
committed
Qed.
Lemma max_prefix_of_snd_alt l1 l2 k1 k2 k3 :
max_prefix_of l1 l2 = (k1, k2, k3) → l2 = k3 ++ k2.
Proof.
intro. pose proof (max_prefix_of_snd l1 l2).
by destruct (max_prefix_of l1 l2) as [[]?]; simplify_equality.
Qed.
Lemma max_prefix_of_snd_prefix l1 l2 : (max_prefix_of l1 l2).2 `prefix_of` l2.
Robbert Krebbers
committed
Proof. eexists. apply max_prefix_of_snd. Qed.
Lemma max_prefix_of_snd_prefix_alt l1 l2 k1 k2 k3 :
max_prefix_of l1 l2 = (k1,k2,k3) → k3 `prefix_of` l2.
Proof. eexists. eauto using max_prefix_of_snd_alt. Qed.
Lemma max_prefix_of_max l1 l2 k :
k `prefix_of` l1 → k `prefix_of` l2 → k `prefix_of` (max_prefix_of l1 l2).2.
Robbert Krebbers
committed
Proof.
intros [l1' ->] [l2' ->]. by induction k; simpl; repeat case_decide;
simpl; auto using prefix_of_nil, prefix_of_cons.
Robbert Krebbers
committed
Qed.
Lemma max_prefix_of_max_alt l1 l2 k1 k2 k3 k :
max_prefix_of l1 l2 = (k1,k2,k3) →
k `prefix_of` l1 → k `prefix_of` l2 → k `prefix_of` k3.
Proof.
intro. pose proof (max_prefix_of_max l1 l2 k).
by destruct (max_prefix_of l1 l2) as [[]?]; simplify_equality.
Qed.
Lemma max_prefix_of_max_snoc l1 l2 k1 k2 k3 x1 x2 :
max_prefix_of l1 l2 = (x1 :: k1, x2 :: k2, k3) → x1 ≠ x2.
Proof.
intros Hl ->. destruct (prefix_of_snoc_not k3 x2).
Robbert Krebbers
committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
eapply max_prefix_of_max_alt; eauto.
* rewrite (max_prefix_of_fst_alt _ _ _ _ _ Hl).
apply prefix_of_app, prefix_of_cons, prefix_of_nil.
* rewrite (max_prefix_of_snd_alt _ _ _ _ _ Hl).
apply prefix_of_app, prefix_of_cons, prefix_of_nil.
Qed.
End prefix_ops.
Lemma prefix_suffix_reverse l1 l2 :
l1 `prefix_of` l2 ↔ reverse l1 `suffix_of` reverse l2.
Proof.
split; intros [k E]; exists (reverse k).
* by rewrite E, reverse_app.
* by rewrite <-(reverse_involutive l2), E, reverse_app, reverse_involutive.
Qed.
Lemma suffix_prefix_reverse l1 l2 :
l1 `suffix_of` l2 ↔ reverse l1 `prefix_of` reverse l2.
Proof. by rewrite prefix_suffix_reverse, !reverse_involutive. Qed.
Lemma suffix_of_nil l : [] `suffix_of` l.
Proof. exists l. by rewrite (right_id_L [] (++)). Qed.
Lemma suffix_of_nil_inv l : l `suffix_of` [] → l = [].
Proof. by intros [[|?] ?]; simplify_list_equality. Qed.
Lemma suffix_of_cons_nil_inv x l : ¬x :: l `suffix_of` [].
Proof. by intros [[] ?]. Qed.
Lemma suffix_of_snoc l1 l2 x :
l1 `suffix_of` l2 → l1 ++ [x] `suffix_of` l2 ++ [x].
Proof. intros [k ->]. exists k. by rewrite (associative_L (++)). Qed.
Robbert Krebbers
committed
Lemma suffix_of_snoc_alt x y l1 l2 :
x = y → l1 `suffix_of` l2 → l1 ++ [x] `suffix_of` l2 ++ [y].
Proof. intros ->. apply suffix_of_snoc. Qed.
Robbert Krebbers
committed
Lemma suffix_of_app l1 l2 k : l1 `suffix_of` l2 → l1 ++ k `suffix_of` l2 ++ k.
Proof. intros [k' ->]. exists k'. by rewrite (associative_L (++)). Qed.
Robbert Krebbers
committed
Lemma suffix_of_app_alt l1 l2 k1 k2 :
k1 = k2 → l1 `suffix_of` l2 → l1 ++ k1 `suffix_of` l2 ++ k2.
Proof. intros ->. apply suffix_of_app. Qed.
Robbert Krebbers
committed
Lemma suffix_of_snoc_inv_1 x y l1 l2 :
l1 ++ [x] `suffix_of` l2 ++ [y] → x = y.
Proof.
intros [k' E]. rewrite (associative_L (++)) in E. by simplify_list_equality.
Qed.
Lemma suffix_of_snoc_inv_2 x y l1 l2 :
l1 ++ [x] `suffix_of` l2 ++ [y] → l1 `suffix_of` l2.
Proof.
intros [k' E]. exists k'. rewrite (associative_L (++)) in E.
by simplify_list_equality.
Qed.
Lemma suffix_of_app_inv l1 l2 k :
l1 ++ k `suffix_of` l2 ++ k → l1 `suffix_of` l2.
Proof.
intros [k' E]. exists k'. rewrite (associative_L (++)) in E.
by simplify_list_equality.
Qed.
Lemma suffix_of_cons_l l1 l2 x : x :: l1 `suffix_of` l2 → l1 `suffix_of` l2.
Proof. intros [k ->]. exists (k ++ [x]). by rewrite <-(associative_L (++)). Qed.
Robbert Krebbers
committed
Lemma suffix_of_app_l l1 l2 l3 : l3 ++ l1 `suffix_of` l2 → l1 `suffix_of` l2.
Proof. intros [k ->]. exists (k ++ l3). by rewrite <-(associative_L (++)). Qed.
Robbert Krebbers
committed
Lemma suffix_of_cons_r l1 l2 x : l1 `suffix_of` l2 → l1 `suffix_of` x :: l2.
Proof. intros [k ->]. by exists (x :: k). Qed.
Robbert Krebbers
committed
Lemma suffix_of_app_r l1 l2 l3 : l1 `suffix_of` l2 → l1 `suffix_of` l3 ++ l2.
Proof. intros [k ->]. exists (l3 ++ k). by rewrite (associative_L (++)). Qed.
Robbert Krebbers
committed
Lemma suffix_of_cons_inv l1 l2 x y :
x :: l1 `suffix_of` y :: l2 → x :: l1 = y :: l2 ∨ x :: l1 `suffix_of` l2.
Proof.
intros [[|? k] E]; [by left|].
Robbert Krebbers
committed
right. simplify_equality. by apply suffix_of_app_r.
Qed.
Lemma suffix_of_length l1 l2 : l1 `suffix_of` l2 → length l1 ≤ length l2.
Proof. intros [? ->]. rewrite app_length. lia. Qed.
Robbert Krebbers
committed
Lemma suffix_of_cons_not x l : ¬x :: l `suffix_of` l.
Proof. intros [??]. discriminate_list_equality. Qed.
Global Instance suffix_of_dec `{∀ x y, Decision (x = y)} l1 l2 :
Decision (l1 `suffix_of` l2).
Proof.
refine (cast_if (decide_rel prefix_of (reverse l1) (reverse l2)));
abstract (by rewrite suffix_prefix_reverse).
Defined.
Section max_suffix_of.
Context `{∀ x y, Decision (x = y)}.
Lemma max_suffix_of_fst l1 l2 :
l1 = (max_suffix_of l1 l2).1.1 ++ (max_suffix_of l1 l2).2.
Robbert Krebbers
committed
Proof.
rewrite <-(reverse_involutive l1) at 1.
rewrite (max_prefix_of_fst (reverse l1) (reverse l2)). unfold max_suffix_of.
destruct (max_prefix_of (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
by rewrite reverse_app.
Qed.
Lemma max_suffix_of_fst_alt l1 l2 k1 k2 k3 :
max_suffix_of l1 l2 = (k1, k2, k3) → l1 = k1 ++ k3.
Proof.
intro. pose proof (max_suffix_of_fst l1 l2).
by destruct (max_suffix_of l1 l2) as [[]?]; simplify_equality.
Qed.
Lemma max_suffix_of_fst_suffix l1 l2 : (max_suffix_of l1 l2).2 `suffix_of` l1.
Robbert Krebbers
committed
Proof. eexists. apply max_suffix_of_fst. Qed.
Lemma max_suffix_of_fst_suffix_alt l1 l2 k1 k2 k3 :
max_suffix_of l1 l2 = (k1, k2, k3) → k3 `suffix_of` l1.
Proof. eexists. eauto using max_suffix_of_fst_alt. Qed.
Lemma max_suffix_of_snd l1 l2 :
l2 = (max_suffix_of l1 l2).1.2 ++ (max_suffix_of l1 l2).2.
Robbert Krebbers
committed
Proof.
rewrite <-(reverse_involutive l2) at 1.
rewrite (max_prefix_of_snd (reverse l1) (reverse l2)). unfold max_suffix_of.
Robbert Krebbers
committed
destruct (max_prefix_of (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
by rewrite reverse_app.
Qed.
Lemma max_suffix_of_snd_alt l1 l2 k1 k2 k3 :
max_suffix_of l1 l2 = (k1,k2,k3) → l2 = k2 ++ k3.
Proof.
intro. pose proof (max_suffix_of_snd l1 l2).
by destruct (max_suffix_of l1 l2) as [[]?]; simplify_equality.
Qed.
Lemma max_suffix_of_snd_suffix l1 l2 : (max_suffix_of l1 l2).2 `suffix_of` l2.
Robbert Krebbers
committed
Proof. eexists. apply max_suffix_of_snd. Qed.
Lemma max_suffix_of_snd_suffix_alt l1 l2 k1 k2 k3 :
max_suffix_of l1 l2 = (k1,k2,k3) → k3 `suffix_of` l2.
Proof. eexists. eauto using max_suffix_of_snd_alt. Qed.
Lemma max_suffix_of_max l1 l2 k :
k `suffix_of` l1 → k `suffix_of` l2 → k `suffix_of` (max_suffix_of l1 l2).2.
Robbert Krebbers
committed
Proof.
generalize (max_prefix_of_max (reverse l1) (reverse l2)).
rewrite !suffix_prefix_reverse. unfold max_suffix_of.
destruct (max_prefix_of (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
rewrite reverse_involutive. auto.
Qed.
Lemma max_suffix_of_max_alt l1 l2 k1 k2 k3 k :
max_suffix_of l1 l2 = (k1, k2, k3) →
k `suffix_of` l1 → k `suffix_of` l2 → k `suffix_of` k3.
Proof.
intro. pose proof (max_suffix_of_max l1 l2 k).
by destruct (max_suffix_of l1 l2) as [[]?]; simplify_equality.
Qed.
Lemma max_suffix_of_max_snoc l1 l2 k1 k2 k3 x1 x2 :
max_suffix_of l1 l2 = (k1 ++ [x1], k2 ++ [x2], k3) → x1 ≠ x2.
Proof.
intros Hl ->. destruct (suffix_of_cons_not x2 k3).
Robbert Krebbers
committed
eapply max_suffix_of_max_alt; eauto.
* rewrite (max_suffix_of_fst_alt _ _ _ _ _ Hl).
by apply (suffix_of_app [x2]), suffix_of_app_r.
* rewrite (max_suffix_of_snd_alt _ _ _ _ _ Hl).
by apply (suffix_of_app [x2]), suffix_of_app_r.
Qed.
End max_suffix_of.
(** ** Properties of the [sublist] predicate *)
Lemma sublist_length l1 l2 : l1 `sublist` l2 → length l1 ≤ length l2.
Proof. induction 1; simpl; auto with arith. Qed.
Lemma sublist_nil_l l : [] `sublist` l.
Proof. induction l; try constructor; auto. Qed.
Lemma sublist_nil_r l : l `sublist` [] ↔ l = [].
Proof. split. by inversion 1. intros ->. constructor. Qed.
Robbert Krebbers
committed
Lemma sublist_app l1 l2 k1 k2 :
l1 `sublist` l2 → k1 `sublist` k2 → l1 ++ k1 `sublist` l2 ++ k2.
Proof. induction 1; simpl; try constructor; auto. Qed.
Lemma sublist_inserts_l k l1 l2 : l1 `sublist` l2 → l1 `sublist` k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma sublist_inserts_r k l1 l2 : l1 `sublist` l2 → l1 `sublist` l2 ++ k.
Proof. induction 1; simpl; try constructor; auto using sublist_nil_l. Qed.
Lemma sublist_cons_r x l k :
l `sublist` x :: k ↔ l `sublist` k ∨ ∃ l', l = x :: l' ∧ l' `sublist` k.
Proof. split. inversion 1; eauto. intros [?|(?&->&?)]; constructor; auto. Qed.
Robbert Krebbers
committed
Lemma sublist_cons_l x l k :
x :: l `sublist` k ↔ ∃ k1 k2, k = k1 ++ x :: k2 ∧ l `sublist` k2.
Proof.
split.
* intros Hlk. induction k as [|y k IH]; inversion Hlk.
+ eexists [], k. by repeat constructor.
+ destruct IH as (k1&k2&->&?); auto. by exists (y :: k1) k2.
* intros (k1&k2&->&?). by apply sublist_inserts_l, sublist_skip.
Robbert Krebbers
committed
Qed.
Lemma sublist_app_r l k1 k2 :
l `sublist` k1 ++ k2 ↔
∃ l1 l2, l = l1 ++ l2 ∧ l1 `sublist` k1 ∧ l2 `sublist` k2.
Proof.
split.
* revert l k2. induction k1 as [|y k1 IH]; intros l k2; simpl.
{ eexists [], l. by repeat constructor. }
rewrite sublist_cons_r. intros [?|(l' & ? &?)]; subst.
+ destruct (IH l k2) as (l1&l2&?&?&?); trivial; subst.
Robbert Krebbers
committed
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
+ destruct (IH l' k2) as (l1&l2&?&?&?); trivial; subst.
exists (y :: l1) l2. auto using sublist_skip.
* intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_l l1 l2 k :
l1 ++ l2 `sublist` k ↔
∃ k1 k2, k = k1 ++ k2 ∧ l1 `sublist` k1 ∧ l2 `sublist` k2.
Proof.
split.
* revert l2 k. induction l1 as [|x l1 IH]; intros l2 k; simpl.
{ eexists [], k. by repeat constructor. }
rewrite sublist_cons_l. intros (k1 & k2 &?&?); subst.
destruct (IH l2 k2) as (h1 & h2 &?&?&?); trivial; subst.
exists (k1 ++ x :: h1) h2. rewrite <-(associative_L (++)).
auto using sublist_inserts_l, sublist_skip.
* intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_inv_l k l1 l2 : k ++ l1 `sublist` k ++ l2 → l1 `sublist` l2.
Proof.
induction k as [|y k IH]; simpl; [done |].
rewrite sublist_cons_r. intros [Hl12|(?&?&?)]; [|simplify_equality; eauto].
rewrite sublist_cons_l in Hl12. destruct Hl12 as (k1&k2&Hk&?).
apply IH. rewrite Hk. eauto using sublist_inserts_l, sublist_cons.
Robbert Krebbers
committed
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
Qed.
Lemma sublist_app_inv_r k l1 l2 : l1 ++ k `sublist` l2 ++ k → l1 `sublist` l2.
Proof.
revert l1 l2. induction k as [|y k IH]; intros l1 l2.
{ by rewrite !(right_id_L [] (++)). }
intros. feed pose proof (IH (l1 ++ [y]) (l2 ++ [y])) as Hl12.
{ by rewrite <-!(associative_L (++)). }
rewrite sublist_app_l in Hl12. destruct Hl12 as (k1&k2&E&?&Hk2).
destruct k2 as [|z k2] using rev_ind; [inversion Hk2|].
rewrite (associative_L (++)) in E. simplify_list_equality.
eauto using sublist_inserts_r.
Qed.
Global Instance: PartialOrder (@sublist A).
Proof.
split; [split|].
* intros l. induction l; constructor; auto.
* intros l1 l2 l3 Hl12. revert l3. induction Hl12.
+ auto using sublist_nil_l.
+ intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
eauto using sublist_inserts_l, sublist_skip.
+ intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
eauto using sublist_inserts_l, sublist_cons.
Robbert Krebbers
committed
* intros l1 l2 Hl12 Hl21. apply sublist_length in Hl21.
induction Hl12; f_equal'; auto with arith.
Robbert Krebbers
committed
apply sublist_length in Hl12. lia.
Qed.
Lemma sublist_take l i : take i l `sublist` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_r. Qed.
Lemma sublist_drop l i : drop i l `sublist` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_l. Qed.
Lemma sublist_delete l i : delete i l `sublist` l.
Proof. revert i. by induction l; intros [|?]; simpl; constructor. Qed.
Lemma sublist_foldr_delete l is : foldr delete l is `sublist` l.
Robbert Krebbers
committed
Proof.
induction is as [|i is IH]; simpl; [done |].
transitivity (foldr delete l is); auto using sublist_delete.
Robbert Krebbers
committed
Qed.
Lemma sublist_alt l1 l2 : l1 `sublist` l2 ↔ ∃ is, l1 = foldr delete l2 is.
Robbert Krebbers
committed
Proof.
split; [|intros [is ->]; apply sublist_foldr_delete].
intros Hl12. cut (∀ k, ∃ is, k ++ l1 = foldr delete (k ++ l2) is).
{ intros help. apply (help []). }
induction Hl12 as [|x l1 l2 _ IH|x l1 l2 _ IH]; intros k.
* by eexists [].
* destruct (IH (k ++ [x])) as [is His]. exists is.
by rewrite <-!(associative_L (++)) in His.
* destruct (IH k) as [is His]. exists (is ++ [length k]).
rewrite fold_right_app. simpl. by rewrite delete_middle.
Robbert Krebbers
committed
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
Qed.
Lemma Permutation_sublist l1 l2 l3 :
l1 ≡ₚ l2 → l2 `sublist` l3 → ∃ l4, l1 `sublist` l4 ∧ l4 ≡ₚ l3.
Proof.
intros Hl1l2. revert l3.
induction Hl1l2 as [|x l1 l2 ? IH|x y l1|l1 l1' l2 ? IH1 ? IH2].
* intros l3. by exists l3.
* intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?&?); subst.
destruct (IH l3'') as (l4&?&Hl4); auto. exists (l3' ++ x :: l4).
split. by apply sublist_inserts_l, sublist_skip. by rewrite Hl4.
* intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?& Hl3); subst.
rewrite sublist_cons_l in Hl3. destruct Hl3 as (l5'&l5''&?& Hl5); subst.
exists (l3' ++ y :: l5' ++ x :: l5''). split.
- by do 2 apply sublist_inserts_l, sublist_skip.
- by rewrite !Permutation_middle, Permutation_swap.
* intros l3 ?. destruct (IH2 l3) as (l3'&?&?); trivial.
destruct (IH1 l3') as (l3'' &?&?); trivial. exists l3''.
split. done. etransitivity; eauto.
Qed.
Lemma sublist_Permutation l1 l2 l3 :
l1 `sublist` l2 → l2 ≡ₚ l3 → ∃ l4, l1 ≡ₚ l4 ∧ l4 `sublist` l3.
Proof.
intros Hl1l2 Hl2l3. revert l1 Hl1l2.
induction Hl2l3 as [|x l2 l3 ? IH|x y l2|l2 l2' l3 ? IH1 ? IH2].
* intros l1. by exists l1.
* intros l1. rewrite sublist_cons_r. intros [?|(l1'&l1''&?)]; subst.
{ destruct (IH l1) as (l4&?&?); trivial.
exists l4. split. done. by constructor. }
destruct (IH l1') as (l4&?&Hl4); auto. exists (x :: l4).
split. by constructor. by constructor.
* intros l1. rewrite sublist_cons_r. intros [Hl1|(l1'&l1''&Hl1)]; subst.
{ exists l1. split; [done|]. rewrite sublist_cons_r in Hl1.
destruct Hl1 as [?|(l1'&?&?)]; subst; by repeat constructor. }
rewrite sublist_cons_r in Hl1. destruct Hl1 as [?|(l1''&?&?)]; subst.
+ exists (y :: l1'). by repeat constructor.
+ exists (x :: y :: l1''). by repeat constructor.
* intros l1 ?. destruct (IH1 l1) as (l3'&?&?); trivial.
destruct (IH2 l3') as (l3'' &?&?); trivial. exists l3''.
split; [|done]. etransitivity; eauto.
Qed.
(** Properties of the [contains] predicate *)
Lemma contains_length l1 l2 : l1 `contains` l2 → length l1 ≤ length l2.
Proof. induction 1; simpl; auto with lia. Qed.
Lemma contains_nil_l l : [] `contains` l.
Proof. induction l; constructor; auto. Qed.
Lemma contains_nil_r l : l `contains` [] ↔ l = [].
Proof.
split; [|intros ->; constructor].
Robbert Krebbers
committed
intros Hl. apply contains_length in Hl. destruct l; simpl in *; auto with lia.
Qed.
Global Instance: PreOrder (@contains A).
Proof.
split.
* intros l. induction l; constructor; auto.
* red. apply contains_trans.
Qed.
Lemma Permutation_contains l1 l2 : l1 ≡ₚ l2 → l1 `contains` l2.
Proof. induction 1; econstructor; eauto. Qed.
Lemma sublist_contains l1 l2 : l1 `sublist` l2 → l1 `contains` l2.
Proof. induction 1; constructor; auto. Qed.
Lemma contains_Permutation l1 l2 : l1 `contains` l2 → ∃ k, l2 ≡ₚ l1 ++ k.
Proof.
induction 1 as
[|x y l ? [k Hk]| |x l1 l2 ? [k Hk]|l1 l2 l3 ? [k Hk] ? [k' Hk']].
* by eexists [].
* exists k. by rewrite Hk.
* eexists []. rewrite (right_id_L [] (++)). by constructor.
* exists (x :: k). by rewrite Hk, Permutation_middle.
* exists (k ++ k'). by rewrite Hk', Hk, (associative_L (++)).
Qed.
Lemma contains_Permutation_length_le l1 l2 :
Robbert Krebbers
committed
length l2 ≤ length l1 → l1 `contains` l2 → l1 ≡ₚ l2.
Proof.
intros Hl21 Hl12. destruct (contains_Permutation l1 l2) as [[|??] Hk]; auto.
* by rewrite Hk, (right_id_L [] (++)).
* rewrite Hk, app_length in Hl21; simpl in Hl21; lia.
Qed.
Lemma contains_Permutation_length_eq l1 l2 :
Robbert Krebbers
committed
length l2 = length l1 → l1 `contains` l2 → l1 ≡ₚ l2.
Proof. intro. apply contains_Permutation_length_le. lia. Qed.
Robbert Krebbers
committed
Global Instance: Proper ((≡ₚ) ==> (≡ₚ) ==> iff) (@contains A).
Proof.
intros l1 l2 ? k1 k2 ?. split; intros.
* transitivity l1. by apply Permutation_contains.
transitivity k1. done. by apply Permutation_contains.
* transitivity l2. by apply Permutation_contains.
transitivity k2. done. by apply Permutation_contains.
Qed.
Global Instance: AntiSymmetric (≡ₚ) (@contains A).
Proof. red. auto using contains_Permutation_length_le, contains_length. Qed.
Robbert Krebbers
committed
Lemma contains_take l i : take i l `contains` l.
Proof. auto using sublist_take, sublist_contains. Qed.
Lemma contains_drop l i : drop i l `contains` l.
Proof. auto using sublist_drop, sublist_contains. Qed.
Lemma contains_delete l i : delete i l `contains` l.
Proof. auto using sublist_delete, sublist_contains. Qed.
Lemma contains_foldr_delete l is : foldr delete l is `sublist` l.
Proof. auto using sublist_foldr_delete, sublist_contains. Qed.
Robbert Krebbers
committed
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
Lemma contains_sublist_l l1 l3 :
l1 `contains` l3 ↔ ∃ l2, l1 `sublist` l2 ∧ l2 ≡ₚ l3.
Proof.
split.
{ intros Hl13. elim Hl13; clear l1 l3 Hl13.
* by eexists [].
* intros x l1 l3 ? (l2&?&?). exists (x :: l2). by repeat constructor.
* intros x y l. exists (y :: x :: l). by repeat constructor.
* intros x l1 l3 ? (l2&?&?). exists (x :: l2). by repeat constructor.
* intros l1 l3 l5 ? (l2&?&?) ? (l4&?&?).
destruct (Permutation_sublist l2 l3 l4) as (l3'&?&?); trivial.
exists l3'. split; etransitivity; eauto. }
intros (l2&?&?).
transitivity l2; auto using sublist_contains, Permutation_contains.
Qed.
Lemma contains_sublist_r l1 l3 :
l1 `contains` l3 ↔ ∃ l2, l1 ≡ₚ l2 ∧ l2 `sublist` l3.
Proof.
rewrite contains_sublist_l.
split; intros (l2&?&?); eauto using sublist_Permutation, Permutation_sublist.
Qed.
Lemma contains_inserts_l k l1 l2 : l1 `contains` l2 → l1 `contains` k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma contains_inserts_r k l1 l2 : l1 `contains` l2 → l1 `contains` l2 ++ k.
Proof. rewrite (commutative (++)). apply contains_inserts_l. Qed.
Lemma contains_skips_l k l1 l2 : l1 `contains` l2 → k ++ l1 `contains` k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma contains_skips_r k l1 l2 : l1 `contains` l2 → l1 ++ k `contains` l2 ++ k.
Proof. rewrite !(commutative (++) _ k). apply contains_skips_l. Qed.
Lemma contains_app l1 l2 k1 k2 :
l1 `contains` l2 → k1 `contains` k2 → l1 ++ k1 `contains` l2 ++ k2.
Proof.
transitivity (l1 ++ k2); auto using contains_skips_l, contains_skips_r.
Qed.
Lemma contains_cons_r x l k :
l `contains` x :: k ↔ l `contains` k ∨ ∃ l', l ≡ₚ x :: l' ∧ l' `contains` k.
Proof.
split.
* rewrite contains_sublist_r. intros (l'&E&Hl').
rewrite sublist_cons_r in Hl'. destruct Hl' as [?|(?&?&?)]; subst.
+ left. rewrite E. eauto using sublist_contains.
+ right. eauto using sublist_contains.
* intros [?|(?&E&?)]; [|rewrite E]; by constructor.
Qed.
Lemma contains_cons_l x l k :
x :: l `contains` k ↔ ∃ k', k ≡ₚ x :: k' ∧ l `contains` k'.
Proof.
split.
* rewrite contains_sublist_l. intros (l'&Hl'&E).
rewrite sublist_cons_l in Hl'. destruct Hl' as (k1&k2&?&?); subst.
exists (k1 ++ k2). split; eauto using contains_inserts_l, sublist_contains.
by rewrite Permutation_middle.
* intros (?&E&?). rewrite E. by constructor.
Qed.
Lemma contains_app_r l k1 k2 :
l `contains` k1 ++ k2 ↔ ∃ l1 l2,
l ≡ₚ l1 ++ l2 ∧ l1 `contains` k1 ∧ l2 `contains` k2.
Proof.
split.
* rewrite contains_sublist_r. intros (l'&E&Hl').
rewrite sublist_app_r in Hl'. destruct Hl' as (l1&l2&?&?&?); subst.
exists l1 l2. eauto using sublist_contains.
* intros (?&?&E&?&?). rewrite E. eauto using contains_app.
Qed.
Lemma contains_app_l l1 l2 k :
l1 ++ l2 `contains` k ↔ ∃ k1 k2,
k ≡ₚ k1 ++ k2 ∧ l1 `contains` k1 ∧ l2 `contains` k2.
Proof.
split.
* rewrite contains_sublist_l. intros (l'&Hl'&E).
rewrite sublist_app_l in Hl'. destruct Hl' as (k1&k2&?&?&?); subst.
exists k1 k2. split. done. eauto using sublist_contains.
* intros (?&?&E&?&?). rewrite E. eauto using contains_app.
Qed.
Lemma contains_app_inv_l l1 l2 k :
k ++ l1 `contains` k ++ l2 → l1 `contains` l2.
Proof.
induction k as [|y k IH]; simpl; [done |]. rewrite contains_cons_l.
intros (?&E&?). apply Permutation_cons_inv in E. apply IH. by rewrite E.
Robbert Krebbers
committed
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
Qed.
Lemma contains_app_inv_r l1 l2 k :
l1 ++ k `contains` l2 ++ k → l1 `contains` l2.
Proof.
revert l1 l2. induction k as [|y k IH]; intros l1 l2.
{ by rewrite !(right_id_L [] (++)). }
intros. feed pose proof (IH (l1 ++ [y]) (l2 ++ [y])) as Hl12.
{ by rewrite <-!(associative_L (++)). }
rewrite contains_app_l in Hl12. destruct Hl12 as (k1&k2&E1&?&Hk2).
rewrite contains_cons_l in Hk2. destruct Hk2 as (k2'&E2&?).
rewrite E2, (Permutation_cons_append k2'), (associative_L (++)) in E1.
apply Permutation_app_inv_r in E1. rewrite E1. eauto using contains_inserts_r.
Qed.
Lemma contains_cons_middle x l k1 k2 :
l `contains` k1 ++ k2 → x :: l `contains` k1 ++ x :: k2.
Proof. rewrite <-Permutation_middle. by apply contains_skip. Qed.
Lemma contains_app_middle l1 l2 k1 k2 :
l2 `contains` k1 ++ k2 → l1 ++ l2 `contains` k1 ++ l1 ++ k2.
Proof.
rewrite !(associative (++)), (commutative (++) k1 l1), <-(associative_L (++)).
by apply contains_skips_l.
Qed.
Lemma contains_middle l k1 k2 : l `contains` k1 ++ l ++ k2.
Proof. by apply contains_inserts_l, contains_inserts_r. Qed.
Lemma Permutation_alt l1 l2 :
l1 ≡ₚ l2 ↔ length l1 = length l2 ∧ l1 `contains` l2.
Proof.
split.
* by intros Hl; rewrite Hl.
* intros [??]; auto using contains_Permutation_length_eq.
Robbert Krebbers
committed
Qed.
Lemma NoDup_contains l k : NoDup l → (∀ x, x ∈ l → x ∈ k) → l `contains` k.
Proof.
intros Hl. revert k. induction Hl as [|x l Hx ? IH].
{ intros k Hk. by apply contains_nil_l. }
intros k Hlk. destruct (elem_of_list_split k x) as (l1&l2&?); subst.
{ apply Hlk. by constructor. }
rewrite <-Permutation_middle. apply contains_skip, IH.
intros y Hy. rewrite elem_of_app.
specialize (Hlk y). rewrite elem_of_app, !elem_of_cons in Hlk.
by destruct Hlk as [?|[?|?]]; subst; eauto.
Qed.
Lemma NoDup_Permutation l k : NoDup l → NoDup k → (∀ x, x ∈ l ↔ x ∈ k) → l ≡ₚ k.
Proof.
intros. apply (anti_symmetric contains); apply NoDup_contains; naive_solver.
Qed.
Robbert Krebbers
committed
Section contains_dec.
Context `{∀ x y, Decision (x = y)}.
Lemma list_remove_Permutation l1 l2 k1 x :
l1 ≡ₚ l2 → list_remove x l1 = Some k1 →
∃ k2, list_remove x l2 = Some k2 ∧ k1 ≡ₚ k2.
Proof.
intros Hl. revert k1. induction Hl
as [|y l1 l2 ? IH|y1 y2 l|l1 l2 l3 ? IH1 ? IH2]; simpl; intros k1 Hk1.
Robbert Krebbers
committed
* done.
* case_decide; simplify_equality; eauto.
destruct (list_remove x l1) as [l|] eqn:?; simplify_equality.
destruct (IH l) as (?&?&?); simplify_option_equality; eauto.
* simplify_option_equality; eauto using Permutation_swap.
Robbert Krebbers
committed
* destruct (IH1 k1) as (k2&?&?); trivial.
destruct (IH2 k2) as (k3&?&?); trivial.
exists k3. split; eauto. by transitivity k2.
Qed.
Lemma list_remove_Some l k x : list_remove x l = Some k → l ≡ₚ x :: k.
Proof.
revert k. induction l as [|y l IH]; simpl; intros k ?; [done |].
simplify_option_equality; auto. by rewrite Permutation_swap, <-IH.
Robbert Krebbers
committed
Qed.
Lemma list_remove_Some_inv l k x :
l ≡ₚ x :: k → ∃ k', list_remove x l = Some k' ∧ k ≡ₚ k'.
Proof.
intros. destruct (list_remove_Permutation (x :: k) l k x) as (k'&?&?).
* done.
* simpl; by case_decide.
* by exists k'.
Qed.
Lemma list_remove_list_contains l1 l2 :
l1 `contains` l2 ↔ is_Some (list_remove_list l1 l2).
Proof.
Robbert Krebbers
committed
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
* revert l2. induction l1 as [|x l1 IH]; simpl.
{ intros l2 _. by exists l2. }
intros l2. rewrite contains_cons_l. intros (k&Hk&?).
destruct (list_remove_Some_inv l2 k x) as (k2&?&Hk2); trivial.
simplify_option_equality. apply IH. by rewrite <-Hk2.
* intros [k Hk]. revert l2 k Hk.
induction l1 as [|x l1 IH]; simpl; intros l2 k.
{ intros. apply contains_nil_l. }
destruct (list_remove x l2) as [k'|] eqn:?; intros; simplify_equality.
rewrite contains_cons_l. eauto using list_remove_Some.
Qed.
Global Instance contains_dec l1 l2 : Decision (l1 `contains` l2).
Proof.
refine (cast_if (decide (is_Some (list_remove_list l1 l2))));
abstract (rewrite list_remove_list_contains; tauto).
Defined.
Global Instance Permutation_dec l1 l2 : Decision (l1 ≡ₚ l2).
Proof.
refine (cast_if_and
(decide (length l1 = length l2)) (decide (l1 `contains` l2)));
abstract (rewrite Permutation_alt; tauto).
Defined.
End contains_dec.
Robbert Krebbers
committed
(** ** Properties of the [Forall] and [Exists] predicate *)
Lemma Forall_Exists_dec {A} {P Q : A → Prop} (dec : ∀ x, {P x} + {Q x}) :
∀ l, {Forall P l} + {Exists Q l}.
Proof.
refine (
fix go l :=
match l return {Forall P l} + {Exists Q l} with
| [] => left _
| x :: l => cast_if_and (dec x) (go l)
end); clear go; intuition.
Defined.
Context {A} (P : A → Prop).
Robbert Krebbers
committed
Definition Forall_nil_2 := @Forall_nil A.
Definition Forall_cons_2 := @Forall_cons A.
Lemma Forall_forall l : Forall P l ↔ ∀ x, x ∈ l → P x.
split; [induction 1; inversion 1; subst; auto|].
intros Hin; induction l as [|x l IH]; constructor; [apply Hin; constructor|].
apply IH. intros ??. apply Hin. by constructor.
Lemma Forall_nil : Forall P [] ↔ True.
Proof. done. Qed.
Lemma Forall_cons_1 x l : Forall P (x :: l) → P x ∧ Forall P l.
Proof. by inversion 1. Qed.
Lemma Forall_cons x l : Forall P (x :: l) ↔ P x ∧ Forall P l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma Forall_singleton x : Forall P [x] ↔ P x.
Proof. rewrite Forall_cons, Forall_nil; tauto. Qed.
Lemma Forall_app_2 l1 l2 : Forall P l1 → Forall P l2 → Forall P (l1 ++ l2).
Proof. induction 1; simpl; auto. Qed.
Lemma Forall_app l1 l2 : Forall P (l1 ++ l2) ↔ Forall P l1 ∧ Forall P l2.
Proof.
split; [induction l1; inversion 1; intuition|].
intros [??]; auto using Forall_app_2.
Qed.
Lemma Forall_true l : (∀ x, P x) → Forall P l.
Proof. induction l; auto. Qed.
Lemma Forall_impl (Q : A → Prop) l :
Forall P l → (∀ x, P x → Q x) → Forall Q l.
Proof. intros H ?. induction H; auto. Defined.
Global Instance Forall_proper:
Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Forall A).
Proof. split; subst; induction 1; constructor (by firstorder auto). Qed.
Lemma Forall_iff l (Q : A → Prop) :
Robbert Krebbers
committed
(∀ x, P x ↔ Q x) → Forall P l ↔ Forall Q l.
Proof. intros H. apply Forall_proper. red; apply H. done. Qed.
Lemma Forall_not l : length l ≠ 0 → Forall (not ∘ P) l → ¬Forall P l.
Proof. by destruct 2; inversion 1. Qed.
Lemma Forall_delete l i : Forall P l → Forall P (delete i l).
Robbert Krebbers
committed
Proof. intros H. revert i. by induction H; intros [|i]; try constructor. Qed.
Lemma Forall_lookup l : Forall P l ↔ ∀ i x, l !! i = Some x → P x.
Robbert Krebbers
committed
rewrite Forall_forall. setoid_rewrite elem_of_list_lookup. naive_solver.
Robbert Krebbers
committed
Lemma Forall_lookup_1 l i x : Forall P l → l !! i = Some x → P x.
Robbert Krebbers
committed
Lemma Forall_lookup_2 l : (∀ i x, l !! i = Some x → P x) → Forall P l.
Proof. by rewrite Forall_lookup. Qed.
Forall P l → (∀ x, l!!i = Some x → P x → P (f x)) → Forall P (alter f i l).
Robbert Krebbers
committed
intros Hl. revert i. induction Hl; simpl; intros [|i]; constructor; auto.
Lemma Forall_alter_inv f l i :
Forall P (alter f i l) → (∀ x, l!!i = Some x → P (f x) → P x) → Forall P l.
Proof.
revert i. induction l; intros [|?]; simpl;
inversion_clear 1; constructor; eauto.
Qed.
Robbert Krebbers
committed
Lemma Forall_replicate n x : P x → Forall P (replicate n x).
Proof. induction n; simpl; constructor; auto. Qed.
Lemma Forall_replicate_eq n (x : A) : Forall (x =) (replicate n x).
Proof. induction n; simpl; constructor; auto. Qed.
Robbert Krebbers
committed
Lemma Forall_take n l : Forall P l → Forall P (take n l).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall_drop n l : Forall P l → Forall P (drop n l).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall_resize n x l : P x → Forall P l → Forall P (resize n x l).
Proof.
intros ? Hl. revert n.
induction Hl; intros [|?]; simpl; auto using Forall_replicate.
Qed.
Lemma Forall_resize_inv n x l :
length l ≤ n → Forall P (resize n x l) → Forall P l.
Proof. intros ?. rewrite resize_ge, Forall_app by done. by intros []. Qed.
Lemma Forall_sublist_lookup l i n k :
sublist_lookup i n l = Some k → Forall P l → Forall P k.
Proof.
unfold sublist_lookup. intros; simplify_option_equality.
auto using Forall_take, Forall_drop.
Qed.
Lemma Forall_sublist_alter f l i n k :
Forall P l → sublist_lookup i n l = Some k → Forall P (f k) →
Forall P (sublist_alter f i n l).
unfold sublist_alter, sublist_lookup. intros; simplify_option_equality.
auto using Forall_app_2, Forall_drop, Forall_take.
Lemma Forall_sublist_alter_inv f l i n k :
sublist_lookup i n l = Some k →
Forall P (sublist_alter f i n l) → Forall P (f k).
Proof.
unfold sublist_alter, sublist_lookup. intros ?; simplify_option_equality.
rewrite !Forall_app; tauto.
Lemma Forall_reshape l szs : Forall P l → Forall (Forall P) (reshape szs l).
Proof.
revert l. induction szs; simpl; auto using Forall_take, Forall_drop.
Lemma Forall_rev_ind (Q : list A → Prop) :
Q [] → (∀ x l, P x → Forall P l → Q l → Q (l ++ [x])) →
∀ l, Forall P l → Q l.
Proof.
intros ?? l. induction l using rev_ind; auto.
rewrite Forall_app, Forall_singleton; intros [??]; auto.
Qed.
Robbert Krebbers
committed
Lemma Exists_exists l : Exists P l ↔ ∃ x, x ∈ l ∧ P x.
* induction 1 as [x|y ?? [x [??]]]; exists x; by repeat constructor.
* intros [x [Hin ?]]. induction l; [by destruct (not_elem_of_nil x)|].
inversion Hin; subst. by left. right; auto.
Qed.
Lemma Exists_inv x l : Exists P (x :: l) → P x ∨ Exists P l.
Proof. inversion 1; intuition trivial. Qed.
Lemma Exists_app l1 l2 : Exists P (l1 ++ l2) ↔ Exists P l1 ∨ Exists P l2.
Proof.
split.
* induction l1; inversion 1; intuition.
Robbert Krebbers
committed
* intros [H|H]; [induction H | induction l1]; simpl; intuition.
Lemma Exists_impl (Q : A → Prop) l :
Exists P l → (∀ x, P x → Q x) → Exists Q l.
Proof. intros H ?. induction H; auto. Defined.
Global Instance Exists_proper:
Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Exists A).
Proof. split; subst; induction 1; constructor (by firstorder auto). Qed.
Lemma Exists_not_Forall l : Exists (not ∘ P) l → ¬Forall P l.
Proof. induction 1; inversion_clear 1; contradiction. Qed.
Lemma Forall_not_Exists l : Forall (not ∘ P) l → ¬Exists P l.
Proof. induction 1; inversion_clear 1; contradiction. Qed.
Lemma Forall_list_difference `{∀ x y : A, Decision (x = y)} l k :
Forall P l → Forall P (list_difference l k).
Proof.
rewrite !Forall_forall.
intros ? x; rewrite elem_of_list_difference; naive_solver.
Qed.
Lemma Forall_list_union `{∀ x y : A, Decision (x = y)} l k :
Forall P l → Forall P k → Forall P (list_union l k).
Proof. intros. apply Forall_app; auto using Forall_list_difference. Qed.
Lemma Forall_list_intersection `{∀ x y : A, Decision (x = y)} l k :
Forall P l → Forall P (list_intersection l k).
Proof.
rewrite !Forall_forall.
intros ? x; rewrite elem_of_list_intersection; naive_solver.
Qed.
Context {dec : ∀ x, Decision (P x)}.
Lemma not_Forall_Exists l : ¬Forall P l → Exists (not ∘ P) l.
Proof. intro. destruct (Forall_Exists_dec dec l); intuition. Qed.
Lemma not_Exists_Forall l : ¬Exists P l → Forall (not ∘ P) l.
Proof. by destruct (Forall_Exists_dec (λ x, swap_if (decide (P x))) l). Qed.
Global Instance Forall_dec l : Decision (Forall P l) :=
match Forall_Exists_dec dec l with
| left H => left H
| right H => right (Exists_not_Forall _ H)
end.
Global Instance Exists_dec l : Decision (Exists P l) :=
match Forall_Exists_dec (λ x, swap_if (decide (P x))) l with
| left H => right (Forall_not_Exists _ H)
| right H => left H
End Forall_Exists.
Lemma replicate_as_Forall {A} (x : A) n l :
replicate n x = l ↔ length l = n ∧ Forall (x =) l.
Proof. rewrite replicate_as_elem_of, Forall_forall. naive_solver. Qed.
Lemma replicate_as_Forall_2 {A} (x : A) n l :
length l = n → Forall (x =) l → replicate n x = l.
Proof. by rewrite replicate_as_Forall. Qed.
Robbert Krebbers
committed
Lemma Forall_swap {A B} (Q : A → B → Prop) l1 l2 :
Forall (λ y, Forall (Q y) l1) l2 ↔ Forall (λ x, Forall (flip Q x) l2) l1.
Proof. repeat setoid_rewrite Forall_forall. simpl. split; eauto. Qed.
Lemma Forall_seq (P : nat → Prop) i n :
Forall P (seq i n) ↔ ∀ j, i ≤ j < i + n → P j.
Proof.
rewrite Forall_lookup. split.
* intros H j [??]. apply (H (j - i)).
rewrite lookup_seq; auto with f_equal lia.
* intros H j x Hj. apply lookup_seq_inv in Hj.
destruct Hj; subst. auto with lia.
Qed.
Robbert Krebbers
committed
(** ** Properties of the [Forall2] predicate *)
Implicit Types x : A.
Implicit Types y : B.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma Forall2_true l k :
(∀ x y, P x y) → length l = length k → Forall2 P l k.
Proof.
intro. revert k. induction l; intros [|??] ?; simplify_equality'; auto.
Qed.
Lemma Forall2_same_length l k :
Forall2 (λ _ _, True) l k ↔ length l = length k.
Proof.
split; [by induction 1; f_equal'|].
revert k. induction l; intros [|??] ?; simplify_equality'; auto.
Qed.
Lemma Forall2_length l k : Forall2 P l k → length l = length k.
Proof. by induction 1; f_equal'. Qed.
Lemma Forall2_length_l l k n : Forall2 P l k → length l = n → length k = n.
Proof. intros ? <-; symmetry. by apply Forall2_length. Qed.
Lemma Forall2_length_r l k n : Forall2 P l k → length k = n → length l = n.
Proof. intros ? <-. by apply Forall2_length. Qed.
Robbert Krebbers
committed
Lemma Forall2_nil_inv_l k : Forall2 P [] k → k = [].
Lemma Forall2_nil_inv_r l : Forall2 P l [] → l = [].
Lemma Forall2_cons_inv x l y k :
Forall2 P (x :: l) (y :: k) → P x y ∧ Forall2 P l k.
Lemma Forall2_cons_inv_l x l k :
Forall2 P (x :: l) k → ∃ y k', P x y ∧ Forall2 P l k' ∧ k = y :: k'.
Lemma Forall2_cons_inv_r l k y :
Forall2 P l (y :: k) → ∃ x l', P x y ∧ Forall2 P l' k ∧ l = x :: l'.
Lemma Forall2_cons_nil_inv x l : Forall2 P (x :: l) [] → False.
Lemma Forall2_nil_cons_inv y k : Forall2 P [] (y :: k) → False.
Lemma Forall2_app_l l1 l2 k :
Forall2 P l1 (take (length l1) k) → Forall2 P l2 (drop (length l1) k) →
Forall2 P (l1 ++ l2) k.
Proof. intros. rewrite <-(take_drop (length l1) k). by apply Forall2_app. Qed.
Lemma Forall2_app_r l k1 k2 :
Forall2 P (take (length k1) l) k1 → Forall2 P (drop (length k1) l) k2 →
Forall2 P l (k1 ++ k2).
Proof. intros. rewrite <-(take_drop (length k1) l). by apply Forall2_app. Qed.
Lemma Forall2_app_inv l1 l2 k1 k2 :
length l1 = length k1 →
Robbert Krebbers
committed
Forall2 P (l1 ++ l2) (k1 ++ k2) → Forall2 P l1 k1 ∧ Forall2 P l2 k2.
Proof.
rewrite <-Forall2_same_length. induction 1; inversion 1; naive_solver.
Qed.
Lemma Forall2_app_inv_l l1 l2 k :
Forall2 P (l1 ++ l2) k ↔
∃ k1 k2, Forall2 P l1 k1 ∧ Forall2 P l2 k2 ∧ k = k1 ++ k2.
Proof.
split; [|intros (?&?&?&?&->); by apply Forall2_app].
revert k. induction l1; inversion 1; naive_solver.
Qed.
Lemma Forall2_app_inv_r l k1 k2 :
Forall2 P l (k1 ++ k2) ↔
∃ l1 l2, Forall2 P l1 k1 ∧ Forall2 P l2 k2 ∧ l = l1 ++ l2.
Proof.
split; [|intros (?&?&?&?&->); by apply Forall2_app].
revert l. induction k1; inversion 1; naive_solver.
Qed.
Lemma Forall2_flip l k : Forall2 (flip P) k l ↔ Forall2 P l k.
Proof. split; induction 1; constructor; auto. Qed.
Lemma Forall2_impl (Q : A → B → Prop) l k :
Forall2 P l k → (∀ x y, P x y → Q x y) → Forall2 Q l k.
Proof. intros H ?. induction H; auto. Defined.
Robbert Krebbers
committed
Forall2 P l k1 → Forall2 P l k2 →
(∀ x y1 y2, P x y1 → P x y2 → y1 = y2) → k1 = k2.
Robbert Krebbers
committed
intros H. revert k2. induction H; inversion_clear 1; intros; f_equal; eauto.
Robbert Krebbers
committed
Forall2 P l k → Forall (λ y, ∀ x, P x y → Q x) k → Forall Q l.
Proof. induction 1; inversion_clear 1; eauto. Qed.
Lemma Forall2_Forall_r (Q : B → Prop) l k :
Robbert Krebbers
committed
Forall2 P l k → Forall (λ x, ∀ y, P x y → Q y) l → Forall Q k.
Proof. induction 1; inversion_clear 1; eauto. Qed.
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
Lemma Forall2_lookup_lr l k i x y :
Forall2 P l k → l !! i = Some x → k !! i = Some y → P x y.
Proof.
intros H. revert i. induction H; intros [|?] ??; simplify_equality'; eauto.
Qed.
Lemma Forall2_lookup_l l k i x :
Forall2 P l k → l !! i = Some x → ∃ y, k !! i = Some y ∧ P x y.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_equality'; eauto.
Qed.
Lemma Forall2_lookup_r l k i y :
Forall2 P l k → k !! i = Some y → ∃ x, l !! i = Some x ∧ P x y.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_equality'; eauto.
Qed.
Lemma Forall2_lookup_2 l k :
length l = length k →
(∀ i x y, l !! i = Some x → k !! i = Some y → P x y) → Forall2 P l k.
Proof.
rewrite <-Forall2_same_length. intros Hl Hlookup.
induction Hl as [|?????? IH]; constructor; [by apply (Hlookup 0)|].
apply IH. apply (λ i, Hlookup (S i)).
Qed.
Lemma Forall2_lookup l k :
Forall2 P l k ↔ length l = length k ∧
(∀ i x y, l !! i = Some x → k !! i = Some y → P x y).
Proof.
naive_solver eauto using Forall2_length, Forall2_lookup_lr,Forall2_lookup_2.
Qed.
Lemma Forall2_alter_l f l k i :
Forall2 P l k →
(∀ x y, l !! i = Some x → k !! i = Some y → P x y → P (f x) y) →
Forall2 P (alter f i l) k.
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_alter_r f l k i :
Forall2 P l k →
(∀ x y, l !! i = Some x → k !! i = Some y → P x y → P x (f y)) →
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
Forall2 P l (alter f i k).
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_alter f g l k i :
Forall2 P l k →
(∀ x y, l !! i = Some x → k !! i = Some y → P x y → P (f x) (g y)) →
Forall2 P (alter f i l) (alter g i k).
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_insert l k x y i :
Forall2 P l k → P x y → Forall2 P (<[i:=x]> l) (<[i:=y]> k).
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_delete l k i :
Forall2 P l k → Forall2 P (delete i l) (delete i k).
Proof. intros Hl. revert i. induction Hl; intros [|]; simpl; intuition. Qed.
Lemma Forall2_replicate_l k n x :
length k = n → Forall (P x) k → Forall2 P (replicate n x) k.
Proof. intros <-. induction 1; simpl; auto. Qed.
Lemma Forall2_replicate_r l n y :
length l = n → Forall (flip P y) l → Forall2 P l (replicate n y).
Proof. intros <-. induction 1; simpl; auto. Qed.
Lemma Forall2_replicate n x y :
P x y → Forall2 P (replicate n x) (replicate n y).
Proof. induction n; simpl; constructor; auto. Qed.
Lemma Forall2_take l k n : Forall2 P l k → Forall2 P (take n l) (take n k).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall2_drop l k n : Forall2 P l k → Forall2 P (drop n l) (drop n k).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall2_resize l k x y n :
P x y → Forall2 P l k → Forall2 P (resize n x l) (resize n y k).
Proof.
intros. rewrite !resize_spec, (Forall2_length l k) by done.
auto using Forall2_app, Forall2_take, Forall2_replicate.
Qed.
Lemma Forall2_resize_ge_l l k x y n m :
P x y → Forall (flip P y) l → n ≤ m →
Forall2 P (resize n x l) k → Forall2 P (resize m x l) (resize m y k).
intros. assert (n = length k) as ->.
{ by rewrite <-(Forall2_length (resize n x l) k), resize_length. }
rewrite (le_plus_minus (length k) m), !resize_plus, resize_all,
drop_all, resize_nil by done; auto using Forall2_app, Forall2_replicate_r,
Forall_resize, Forall_drop, resize_length.
Lemma Forall2_resize_ge_r l k x y n m :
P x y → Forall (P x) k → n ≤ m →
Forall2 P l (resize n y k) → Forall2 P (resize m x l) (resize m y k).
intros. assert (n = length l) as ->.
{ by rewrite (Forall2_length l (resize n y k)), resize_length. }
rewrite (le_plus_minus (length l) m), !resize_plus, resize_all,
drop_all, resize_nil by done; auto using Forall2_app, Forall2_replicate_l,
Forall_resize, Forall_drop, resize_length.
Lemma Forall2_sublist_lookup_l l k n i l' :
Forall2 P l k → sublist_lookup n i l = Some l' →
∃ k', sublist_lookup n i k = Some k' ∧ Forall2 P l' k'.
unfold sublist_lookup. intros Hlk Hl.
exists (take i (drop n k)); simplify_option_equality.
* auto using Forall2_take, Forall2_drop.
* apply Forall2_length in Hlk; lia.
Lemma Forall2_sublist_lookup_r l k n i k' :
Forall2 P l k → sublist_lookup n i k = Some k' →
∃ l', sublist_lookup n i l = Some l' ∧ Forall2 P l' k'.
intro. unfold sublist_lookup.
erewrite Forall2_length by eauto; intros; simplify_option_equality.
eauto using Forall2_take, Forall2_drop.
Lemma Forall2_sublist_alter f g l k i n l' k' :
Forall2 P l k → sublist_lookup i n l = Some l' →
sublist_lookup i n k = Some k' → Forall2 P (f l') (g k') →
Forall2 P (sublist_alter f i n l) (sublist_alter g i n k).
intro. unfold sublist_alter, sublist_lookup.
erewrite Forall2_length by eauto; intros; simplify_option_equality.
auto using Forall2_app, Forall2_drop, Forall2_take.
Lemma Forall2_sublist_alter_l f l k i n l' k' :
Forall2 P l k → sublist_lookup i n l = Some l' →
sublist_lookup i n k = Some k' → Forall2 P (f l') k' →
Forall2 P (sublist_alter f i n l) k.
Proof.
intro. unfold sublist_lookup, sublist_alter.
erewrite <-Forall2_length by eauto; intros; simplify_option_equality.
apply Forall2_app_l;
rewrite ?take_length_le by lia; auto using Forall2_take.
apply Forall2_app_l; erewrite Forall2_length, take_length,
drop_length, <-Forall2_length, Min.min_l by eauto with lia; [done|].
rewrite drop_drop; auto using Forall2_drop.
Qed.
Lemma Forall2_transitive {C} (Q : B → C → Prop) (R : A → C → Prop) l k lC :
(∀ x y z, P x y → Q y z → R x z) →
Forall2 P l k → Forall2 Q k lC → Forall2 R l lC.
Proof. intros ? Hl. revert lC. induction Hl; inversion_clear 1; eauto. Qed.
Lemma Forall2_Forall (Q : A → A → Prop) l :
Forall (λ x, Q x x) l → Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.
Global Instance Forall2_dec `{dec : ∀ x y, Decision (P x y)} :
∀ l k, Decision (Forall2 P l k).
fix go l k : Decision (Forall2 P l k) :=
match l, k with
| x :: l, y :: k => cast_if_and (decide (P x y)) (go l k)
end); clear dec go; abstract first [by constructor | by inversion 1].
End Forall2.
Section Forall2_order.
Global Instance: Reflexive R → Reflexive (Forall2 R).
Proof. intros ? l. induction l; by constructor. Qed.
Global Instance: Symmetric R → Symmetric (Forall2 R).
Proof. intros. induction 1; constructor; auto. Qed.
Global Instance: Transitive R → Transitive (Forall2 R).
Robbert Krebbers
committed
Proof. intros ????. apply Forall2_transitive. apply transitivity. Qed.
Global Instance: Equivalence R → Equivalence (Forall2 R).
Proof. split; apply _. Qed.
Global Instance: PreOrder R → PreOrder (Forall2 R).
Proof. split; apply _. Qed.
Robbert Krebbers
committed
Global Instance: AntiSymmetric (=) R → AntiSymmetric (=) (Forall2 R).
Proof. induction 2; inversion_clear 1; f_equal; auto. Qed.
Robbert Krebbers
committed
Global Instance: Proper (R ==> Forall2 R ==> Forall2 R) (::).
Proof. by constructor. Qed.
Global Instance: Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (++).
Proof. repeat intro. eauto using Forall2_app. Qed.
Global Instance: Proper (Forall2 R ==> Forall2 R) (delete i).
Proof. repeat intro. eauto using Forall2_delete. Qed.
Global Instance: Proper (R ==> Forall2 R) (replicate n).
Proof. repeat intro. eauto using Forall2_replicate. Qed.
Global Instance: Proper (Forall2 R ==> Forall2 R) (take n).
Proof. repeat intro. eauto using Forall2_take. Qed.
Global Instance: Proper (Forall2 R ==> Forall2 R) (drop n).
Proof. repeat intro. eauto using Forall2_drop. Qed.
Global Instance: Proper (R ==> Forall2 R ==> Forall2 R) (resize n).
Proof. repeat intro. eauto using Forall2_resize. Qed.
Robbert Krebbers
committed
Section Forall3.
Context {A B C} (P : A → B → C → Prop).
Lemma Forall3_app l1 k1 k1' l2 k2 k2' :
Forall3 P l1 k1 k1' → Forall3 P l2 k2 k2' →
Forall3 P (l1 ++ l2) (k1 ++ k2) (k1' ++ k2').
Proof. induction 1; simpl; [done|constructor]; auto. Qed.
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
Lemma Forall3_impl (Q : A → B → C → Prop) l l' k :
Forall3 P l l' k → (∀ x y z, P x y z → Q x y z) → Forall3 Q l l' k.
Proof. intros Hl ?. induction Hl; constructor; auto. Defined.
Lemma Forall3_length_lm l l' k : Forall3 P l l' k → length l = length l'.
Proof. by induction 1; f_equal'. Qed.
Lemma Forall3_lookup_lmr l l' k i x y z :
Forall3 P l l' k →
l !! i = Some x → l' !! i = Some y → k !! i = Some z → P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ???; simplify_equality'; eauto.
Qed.
Lemma Forall3_lookup_l l l' k i x :
Forall3 P l l' k → l !! i = Some x →
∃ y z, l' !! i = Some y ∧ k !! i = Some z ∧ P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_equality'; eauto.
Qed.
Lemma Forall3_lookup_m l l' k i y :
Forall3 P l l' k → l' !! i = Some y →
∃ x z, l !! i = Some x ∧ k !! i = Some z ∧ P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_equality'; eauto.
Qed.
Lemma Forall3_lookup_r l l' k i z :
Forall3 P l l' k → k !! i = Some z →
∃ x y, l !! i = Some x ∧ l' !! i = Some y ∧ P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_equality'; eauto.
Qed.
Lemma Forall3_alter_lm f g l l' k i :
Forall3 P l l' k →
(∀ x y z, l !! i = Some x → l' !! i = Some y → k !! i = Some z →
P x y z → P (f x) (g y) z) →
Forall3 P (alter f i l) (alter g i l') k.
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
End Forall3.
(** * Properties of the monadic operations *)
Section fmap.
Context {A B : Type} (f : A → B).
Lemma list_fmap_id (l : list A) : id <$> l = l.
Proof. induction l; f_equal'; auto. Qed.
Robbert Krebbers
committed
Lemma list_fmap_compose {C} (g : B → C) l : g ∘ f <$> l = g <$> f <$> l.
Proof. induction l; f_equal'; auto. Qed.
Lemma list_fmap_ext (g : A → B) (l1 l2 : list A) :
(∀ x, f x = g x) → l1 = l2 → fmap f l1 = fmap g l2.
Proof. intros ? <-. induction l1; f_equal'; auto. Qed.
Global Instance: Injective (=) (=) f → Injective (=) (=) (fmap f).
Proof.
intros ? l1. induction l1 as [|x l1 IH]; [by intros [|??]|].
intros [|??]; intros; f_equal'; simplify_equality; auto.
Qed.
Definition fmap_nil : f <$> [] = [] := eq_refl.
Definition fmap_cons x l : f <$> x :: l = f x :: f <$> l := eq_refl.
Lemma fmap_app l1 l2 : f <$> l1 ++ l2 = (f <$> l1) ++ (f <$> l2).
Proof. by induction l1; f_equal'. Qed.
Robbert Krebbers
committed
Lemma fmap_nil_inv k : f <$> k = [] → k = [].
Proof. by destruct k. Qed.
Lemma fmap_cons_inv y l k :
Robbert Krebbers
committed
f <$> l = y :: k → ∃ x l', y = f x ∧ k = f <$> l' ∧ l = x :: l'.
Proof. intros. destruct l; simplify_equality'; eauto. Qed.
Lemma fmap_app_inv l k1 k2 :
Robbert Krebbers
committed
f <$> l = k1 ++ k2 → ∃ l1 l2, k1 = f <$> l1 ∧ k2 = f <$> l2 ∧ l = l1 ++ l2.
Proof.
revert l. induction k1 as [|y k1 IH]; simpl; [intros l ?; by eexists [],l|].
intros [|x l] ?; simplify_equality'.
destruct (IH l) as (l1&l2&->&->&->); [done|]. by exists (x :: l1) l2.
Qed.
Lemma fmap_length l : length (f <$> l) = length l.
Proof. by induction l; f_equal'. Qed.
Lemma fmap_reverse l : f <$> reverse l = reverse (f <$> l).
induction l as [|?? IH]; csimpl; by rewrite ?reverse_cons, ?fmap_app, ?IH.
Lemma fmap_last l : last (f <$> l) = f <$> last l.
Proof. induction l as [|? []]; simpl; auto. Qed.
Robbert Krebbers
committed
Lemma fmap_replicate n x : f <$> replicate n x = replicate n (f x).
Proof. by induction n; f_equal'. Qed.
Lemma fmap_take n l : f <$> take n l = take n (f <$> l).
Proof. revert n. by induction l; intros [|?]; f_equal'. Qed.
Lemma fmap_drop n l : f <$> drop n l = drop n (f <$> l).
Proof. revert n. by induction l; intros [|?]; f_equal'. Qed.
Lemma fmap_resize n x l : f <$> resize n x l = resize n (f x) (f <$> l).
Proof.
revert n. induction l; intros [|?]; f_equal'; auto using fmap_replicate.
Qed.
Lemma replicate_const_fmap (x : A) (l : list A) :
const x <$> l = replicate (length l) x.
Proof. by induction l; f_equal'. Qed.
Lemma list_lookup_fmap l i : (f <$> l) !! i = f <$> (l !! i).
Proof. revert i. induction l; by intros [|]. Qed.
Lemma list_lookup_fmap_inv l i x :
(f <$> l) !! i = Some x → ∃ y, x = f y ∧ l !! i = Some y.
intros Hi. rewrite list_lookup_fmap in Hi.
destruct (l !! i) eqn:?; simplify_equality; eauto.
Lemma list_alter_fmap (g : A → A) (h : B → B) l i :
Robbert Krebbers
committed
Forall (λ x, f (g x) = h (f x)) l → f <$> alter g i l = alter h i (f <$> l).
Proof. intros Hl. revert i. by induction Hl; intros [|i]; f_equal'. Qed.
Lemma elem_of_list_fmap_1 l x : x ∈ l → f x ∈ f <$> l.
Proof. induction 1; csimpl; rewrite elem_of_cons; intuition. Qed.
Lemma elem_of_list_fmap_1_alt l x y : x ∈ l → y = f x → y ∈ f <$> l.
Proof. intros. subst. by apply elem_of_list_fmap_1. Qed.
Lemma elem_of_list_fmap_2 l x : x ∈ f <$> l → ∃ y, x = f y ∧ y ∈ l.
induction l as [|y l IH]; simpl; inversion_clear 1.
* exists y. split; [done | by left].
* destruct IH as [z [??]]. done. exists z. split; [done | by right].
Lemma elem_of_list_fmap l x : x ∈ f <$> l ↔ ∃ y, x = f y ∧ y ∈ l.
Proof.
naive_solver eauto using elem_of_list_fmap_1_alt, elem_of_list_fmap_2.
Qed.
Lemma NoDup_fmap_1 l : NoDup (f <$> l) → NoDup l.
Proof.
induction l; simpl; inversion_clear 1; constructor; auto.
rewrite elem_of_list_fmap in *. naive_solver.
Qed.
Lemma NoDup_fmap_2 `{!Injective (=) (=) f} l : NoDup l → NoDup (f <$> l).
Proof.
Robbert Krebbers
committed
induction 1; simpl; constructor; trivial. rewrite elem_of_list_fmap.
intros [y [Hxy ?]]. apply (injective f) in Hxy. by subst.
Qed.
Lemma NoDup_fmap `{!Injective (=) (=) f} l : NoDup (f <$> l) ↔ NoDup l.
Proof. split; auto using NoDup_fmap_1, NoDup_fmap_2. Qed.
Robbert Krebbers
committed
Global Instance fmap_sublist: Proper (sublist ==> sublist) (fmap f).
Proof. induction 1; simpl; econstructor; eauto. Qed.
Global Instance fmap_contains: Proper (contains ==> contains) (fmap f).
Proof. induction 1; simpl; econstructor; eauto. Qed.
Global Instance fmap_Permutation: Proper ((≡ₚ) ==> (≡ₚ)) (fmap f).
Proof. induction 1; simpl; econstructor; eauto. Qed.
Lemma Forall_fmap_ext_1 (g : A → B) (l : list A) :
Forall (λ x, f x = g x) l → fmap f l = fmap g l.
Proof. by induction 1; f_equal'. Qed.
Lemma Forall_fmap_ext (g : A → B) (l : list A) :
Forall (λ x, f x = g x) l ↔ fmap f l = fmap g l.
split; [auto using Forall_fmap_ext_1|].
induction l; simpl; constructor; simplify_equality; auto.
Robbert Krebbers
committed
Lemma Forall_fmap (P : B → Prop) l : Forall P (f <$> l) ↔ Forall (P ∘ f) l.
Proof. split; induction l; inversion_clear 1; constructor; auto. Qed.
Lemma Exists_fmap (P : B → Prop) l : Exists P (f <$> l) ↔ Exists (P ∘ f) l.
Proof. split; induction l; inversion 1; constructor (by auto). Qed.
Lemma Forall2_fmap_l {C} (P : B → C → Prop) l1 l2 :
Forall2 P (f <$> l1) l2 ↔ Forall2 (P ∘ f) l1 l2.
Proof.
split; revert l2; induction l1; inversion_clear 1; constructor; auto.
Qed.
Lemma Forall2_fmap_r {C} (P : C → B → Prop) l1 l2 :
Forall2 P l1 (f <$> l2) ↔ Forall2 (λ x, P x ∘ f) l1 l2.
Proof.
split; revert l1; induction l2; inversion_clear 1; constructor; auto.
Qed.
Lemma Forall2_fmap_1 {C D} (g : C → D) (P : B → D → Prop) l1 l2 :
Robbert Krebbers
committed
Forall2 P (f <$> l1) (g <$> l2) → Forall2 (λ x1 x2, P (f x1) (g x2)) l1 l2.
Proof. revert l2; induction l1; intros [|??]; inversion_clear 1; auto. Qed.
Lemma Forall2_fmap_2 {C D} (g : C → D) (P : B → D → Prop) l1 l2 :
Robbert Krebbers
committed
Forall2 (λ x1 x2, P (f x1) (g x2)) l1 l2 → Forall2 P (f <$> l1) (g <$> l2).
Proof. induction 1; csimpl; auto. Qed.
Lemma Forall2_fmap {C D} (g : C → D) (P : B → D → Prop) l1 l2 :
Robbert Krebbers
committed
Forall2 P (f <$> l1) (g <$> l2) ↔ Forall2 (λ x1 x2, P (f x1) (g x2)) l1 l2.
Proof. split; auto using Forall2_fmap_1, Forall2_fmap_2. Qed.
Lemma list_fmap_bind {C} (g : B → list C) l : (f <$> l) ≫= g = l ≫= g ∘ f.
Proof. by induction l; f_equal'. Qed.
Lemma list_alter_fmap_mono {A} (f : A → A) (g : A → A) l i :
Forall (λ x, f (g x) = g (f x)) l → f <$> alter g i l = alter g i (f <$> l).
Proof. auto using list_alter_fmap. Qed.
Lemma NoDup_fmap_fst {A B} (l : list (A * B)) :
Robbert Krebbers
committed
(∀ x y1 y2, (x,y1) ∈ l → (x,y2) ∈ l → y1 = y2) → NoDup l → NoDup (fst <$> l).
intros Hunique. induction 1 as [|[x1 y1] l Hin Hnodup IH]; csimpl; constructor.
* rewrite elem_of_list_fmap.
intros [[x2 y2] [??]]; simpl in *; subst. destruct Hin.
rewrite (Hunique x2 y1 y2); rewrite ?elem_of_cons; auto.
* apply IH. intros. eapply Hunique; rewrite ?elem_of_cons; eauto.
Section bind.
Context {A B : Type} (f : A → list B).
Lemma list_bind_ext (g : A → list B) l1 l2 :
(∀ x, f x = g x) → l1 = l2 → l1 ≫= f = l2 ≫= g.
Proof. intros ? <-. by induction l1; f_equal'. Qed.
Lemma Forall_bind_ext (g : A → list B) (l : list A) :
Forall (λ x, f x = g x) l → l ≫= f = l ≫= g.
Proof. by induction 1; f_equal'. Qed.
Global Instance bind_sublist: Proper (sublist ==> sublist) (mbind f).
Robbert Krebbers
committed
Proof.
induction 1; simpl; auto;
[by apply sublist_app|by apply sublist_inserts_l].
Robbert Krebbers
committed
Qed.
Global Instance bind_contains: Proper (contains ==> contains) (mbind f).
Robbert Krebbers
committed
Proof.
induction 1; csimpl; auto.
Robbert Krebbers
committed
* by apply contains_app.
* by rewrite !(associative_L (++)), (commutative (++) (f _)).
* by apply contains_inserts_l.
* etransitivity; eauto.
Qed.
Global Instance bind_Permutation: Proper ((≡ₚ) ==> (≡ₚ)) (mbind f).
Robbert Krebbers
committed
Proof.
induction 1; csimpl; auto.
Robbert Krebbers
committed
* by f_equiv.
* by rewrite !(associative_L (++)), (commutative (++) (f _)).
* etransitivity; eauto.
Qed.
Lemma bind_cons x l : (x :: l) ≫= f = f x ++ l ≫= f.
Proof. done. Qed.
Lemma bind_singleton x : [x] ≫= f = f x.
Proof. csimpl. by rewrite (right_id_L _ (++)). Qed.
Lemma bind_app l1 l2 : (l1 ++ l2) ≫= f = (l1 ≫= f) ++ (l2 ≫= f).
Proof. by induction l1; csimpl; rewrite <-?(associative_L (++)); f_equal. Qed.
Lemma elem_of_list_bind (x : B) (l : list A) :
x ∈ l ≫= f ↔ ∃ y, x ∈ f y ∧ y ∈ l.
Proof.
split.
* induction l as [|y l IH]; csimpl; [inversion 1|].
rewrite elem_of_app. intros [?|?].
+ exists y. split; [done | by left].
Robbert Krebbers
committed
+ destruct IH as [z [??]]. done. exists z. split; [done | by right].
* intros [y [Hx Hy]]. induction Hy; csimpl; rewrite elem_of_app; intuition.
Lemma Forall_bind (P : B → Prop) l :
Forall P (l ≫= f) ↔ Forall (Forall P ∘ f) l.
Proof.
split.
* induction l; csimpl; rewrite ?Forall_app; constructor; csimpl; intuition.
* induction 1; csimpl; rewrite ?Forall_app; auto.
Lemma Forall2_bind {C D} (g : C → list D) (P : B → D → Prop) l1 l2 :
Forall2 (λ x1 x2, Forall2 P (f x1) (g x2)) l1 l2 →
Forall2 P (l1 ≫= f) (l2 ≫= g).
Proof. induction 1; csimpl; auto using Forall2_app. Qed.
Section ret_join.
Context {A : Type}.
Robbert Krebbers
committed
Lemma list_join_bind (ls : list (list A)) : mjoin ls = ls ≫= id.
Proof. by induction ls; f_equal'. Qed.
Robbert Krebbers
committed
Global Instance mjoin_Permutation:
Proper (@Permutation (list A) ==> (≡ₚ)) mjoin.
Proof. intros ?? E. by rewrite !list_join_bind, E. Qed.
Lemma elem_of_list_ret (x y : A) : x ∈ @mret list _ A y ↔ x = y.
Proof. apply elem_of_list_singleton. Qed.
Lemma elem_of_list_join (x : A) (ls : list (list A)) :
x ∈ mjoin ls ↔ ∃ l, x ∈ l ∧ l ∈ ls.
Proof. by rewrite list_join_bind, elem_of_list_bind. Qed.
Robbert Krebbers
committed
Lemma join_nil (ls : list (list A)) : mjoin ls = [] ↔ Forall (= []) ls.
split; [|by induction 1 as [|[|??] ?]].
by induction ls as [|[|??] ?]; constructor; auto.
Robbert Krebbers
committed
Lemma join_nil_1 (ls : list (list A)) : mjoin ls = [] → Forall (= []) ls.
Proof. by rewrite join_nil. Qed.
Robbert Krebbers
committed
Lemma join_nil_2 (ls : list (list A)) : Forall (= []) ls → mjoin ls = [].
Proof. by rewrite join_nil. Qed.
Lemma Forall_join (P : A → Prop) (ls: list (list A)) :
Forall (Forall P) ls → Forall P (mjoin ls).
Proof. induction 1; simpl; auto using Forall_app_2. Qed.
Lemma Forall2_join {B} (P : A → B → Prop) ls1 ls2 :
Robbert Krebbers
committed
Forall2 (Forall2 P) ls1 ls2 → Forall2 P (mjoin ls1) (mjoin ls2).
Proof. induction 1; simpl; auto using Forall2_app. Qed.
End ret_join.
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
Section mapM.
Context {A B : Type} (f : A → option B).
Lemma mapM_ext (g : A → option B) l : (∀ x, f x = g x) → mapM f l = mapM g l.
Proof. intros Hfg. by induction l; simpl; rewrite ?Hfg, ?IHl. Qed.
Lemma Forall2_mapM_ext (g : A → option B) l k :
Forall2 (λ x y, f x = g y) l k → mapM f l = mapM g k.
Proof. induction 1 as [|???? Hfg ? IH]; simpl. done. by rewrite Hfg, IH. Qed.
Lemma Forall_mapM_ext (g : A → option B) l :
Forall (λ x, f x = g x) l → mapM f l = mapM g l.
Proof. induction 1 as [|?? Hfg ? IH]; simpl. done. by rewrite Hfg, IH. Qed.
Lemma mapM_Some_1 l k : mapM f l = Some k → Forall2 (λ x y, f x = Some y) l k.
Proof.
revert k. induction l as [|x l]; intros [|y k]; simpl; try done.
* destruct (f x); simpl; [|discriminate]. by destruct (mapM f l).
* destruct (f x) eqn:?; simpl; [|discriminate].
destruct (mapM f l); intros; simplify_equality. constructor; auto.
Qed.
Lemma mapM_Some_2 l k : Forall2 (λ x y, f x = Some y) l k → mapM f l = Some k.
Proof.
induction 1 as [|???? Hf ? IH]; simpl; [done |].
rewrite Hf. simpl. by rewrite IH.
Qed.
Lemma mapM_Some l k : mapM f l = Some k ↔ Forall2 (λ x y, f x = Some y) l k.
Proof. split; auto using mapM_Some_1, mapM_Some_2. Qed.
Lemma mapM_length l k : mapM f l = Some k → length l = length k.
Proof. intros. by eapply Forall2_length, mapM_Some_1. Qed.
Lemma mapM_None_1 l : mapM f l = None → Exists (λ x, f x = None) l.
Proof.
induction l as [|x l IH]; simpl; [done|].
destruct (f x) eqn:?; simpl; eauto. by destruct (mapM f l); eauto.
Qed.
Lemma mapM_None_2 l : Exists (λ x, f x = None) l → mapM f l = None.
Proof.
induction 1 as [x l Hx|x l ? IH]; simpl; [by rewrite Hx|].
by destruct (f x); simpl; rewrite ?IH.
Qed.
Lemma mapM_None l : mapM f l = None ↔ Exists (λ x, f x = None) l.
Proof. split; auto using mapM_None_1, mapM_None_2. Qed.
Lemma mapM_is_Some_1 l : is_Some (mapM f l) → Forall (is_Some ∘ f) l.
Proof.
unfold compose. setoid_rewrite <-not_eq_None_Some.
rewrite mapM_None. apply (not_Exists_Forall _).
Qed.
Lemma mapM_is_Some_2 l : Forall (is_Some ∘ f) l → is_Some (mapM f l).
Proof.
unfold compose. setoid_rewrite <-not_eq_None_Some.
rewrite mapM_None. apply (Forall_not_Exists _).
Qed.
Lemma mapM_is_Some l : is_Some (mapM f l) ↔ Forall (is_Some ∘ f) l.
Proof. split; auto using mapM_is_Some_1, mapM_is_Some_2. Qed.
Lemma mapM_fmap_Some (g : B → A) (l : list B) :
(∀ x, f (g x) = Some x) → mapM f (g <$> l) = Some l.
Proof. intros. by induction l; simpl; simplify_option_equality. Qed.
Lemma mapM_fmap_Some_inv (g : B → A) (l : list B) (k : list A) :
(∀ x y, f y = Some x → y = g x) → mapM f k = Some l → k = g <$> l.
Proof.
intros Hgf. revert l; induction k as [|??]; intros [|??] ?;
simplify_option_equality; f_equiv; eauto.
Qed.
End mapM.
Robbert Krebbers
committed
(** ** Properties of the [permutations] function *)
Section permutations.
Robbert Krebbers
committed
Implicit Types x y z : A.
Implicit Types l : list A.
Robbert Krebbers
committed
Lemma interleave_cons x l : x :: l ∈ interleave x l.
Proof. destruct l; simpl; rewrite elem_of_cons; auto. Qed.
Lemma interleave_Permutation x l l' : l' ∈ interleave x l → l' ≡ₚ x :: l.
Robbert Krebbers
committed
revert l'. induction l as [|y l IH]; intros l'; simpl.
* rewrite elem_of_list_singleton. by intros ->.
* rewrite elem_of_cons, elem_of_list_fmap. intros [->|[? [-> H]]]; [done|].
rewrite (IH _ H). constructor.
Robbert Krebbers
committed
Lemma permutations_refl l : l ∈ permutations l.
Proof.
induction l; simpl; [by apply elem_of_list_singleton|].
apply elem_of_list_bind. eauto using interleave_cons.
Robbert Krebbers
committed
Qed.
Lemma permutations_skip x l l' :
l ∈ permutations l' → x :: l ∈ permutations (x :: l').
Proof. intro. apply elem_of_list_bind; eauto using interleave_cons. Qed.
Robbert Krebbers
committed
Lemma permutations_swap x y l : y :: x :: l ∈ permutations (x :: y :: l).
Proof.
simpl. apply elem_of_list_bind. exists (y :: l). split; simpl.
* destruct l; csimpl; rewrite !elem_of_cons; auto.
Robbert Krebbers
committed
* apply elem_of_list_bind. simpl.
eauto using interleave_cons, permutations_refl.
Qed.
Lemma permutations_nil l : l ∈ permutations [] ↔ l = [].
Proof. simpl. by rewrite elem_of_list_singleton. Qed.
Lemma interleave_interleave_toggle x1 x2 l1 l2 l3 :
l1 ∈ interleave x1 l2 → l2 ∈ interleave x2 l3 → ∃ l4,
l1 ∈ interleave x2 l4 ∧ l4 ∈ interleave x1 l3.
Proof.
revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
{ rewrite !elem_of_list_singleton. intros ? ->. exists [x1].
change (interleave x2 [x1]) with ([[x2; x1]] ++ [[x1; x2]]).
by rewrite (commutative (++)), elem_of_list_singleton. }
Robbert Krebbers
committed
rewrite elem_of_cons, elem_of_list_fmap.
intros Hl1 [? | [l2' [??]]]; simplify_equality'.
Robbert Krebbers
committed
* rewrite !elem_of_cons, elem_of_list_fmap in Hl1.
destruct Hl1 as [? | [? | [l4 [??]]]]; subst.
+ exists (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
+ exists (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
Robbert Krebbers
committed
+ exists l4. simpl. rewrite elem_of_cons. auto using interleave_cons.
* rewrite elem_of_cons, elem_of_list_fmap in Hl1.
destruct Hl1 as [? | [l1' [??]]]; subst.
+ exists (x1 :: y :: l3). csimpl.
Robbert Krebbers
committed
rewrite !elem_of_cons, !elem_of_list_fmap.
split; [| by auto]. right. right. exists (y :: l2').
rewrite elem_of_list_fmap. naive_solver.
+ destruct (IH l1' l2') as [l4 [??]]; auto. exists (y :: l4). simpl.
rewrite !elem_of_cons, !elem_of_list_fmap. naive_solver.
Qed.
Lemma permutations_interleave_toggle x l1 l2 l3 :
l1 ∈ permutations l2 → l2 ∈ interleave x l3 → ∃ l4,
l1 ∈ interleave x l4 ∧ l4 ∈ permutations l3.
Proof.
revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
{ rewrite elem_of_list_singleton. intros Hl1 ->. eexists [].
by rewrite elem_of_list_singleton. }
Robbert Krebbers
committed
rewrite elem_of_cons, elem_of_list_fmap.
intros Hl1 [? | [l2' [? Hl2']]]; simplify_equality'.
Robbert Krebbers
committed
* rewrite elem_of_list_bind in Hl1.
destruct Hl1 as [l1' [??]]. by exists l1'.
* rewrite elem_of_list_bind in Hl1. setoid_rewrite elem_of_list_bind.
destruct Hl1 as [l1' [??]]. destruct (IH l1' l2') as (l1''&?&?); auto.
destruct (interleave_interleave_toggle y x l1 l1' l1'') as (?&?&?); eauto.
Qed.
Lemma permutations_trans l1 l2 l3 :
l1 ∈ permutations l2 → l2 ∈ permutations l3 → l1 ∈ permutations l3.
Proof.
revert l1 l2. induction l3 as [|x l3 IH]; intros l1 l2; simpl.
* rewrite !elem_of_list_singleton. intros Hl1 ->; simpl in *.
by rewrite elem_of_list_singleton in Hl1.
Robbert Krebbers
committed
* rewrite !elem_of_list_bind. intros Hl1 [l2' [Hl2 Hl2']].
destruct (permutations_interleave_toggle x l1 l2 l2') as [? [??]]; eauto.
Qed.
Lemma permutations_Permutation l l' : l' ∈ permutations l ↔ l ≡ₚ l'.
Proof.
split.
* revert l'. induction l; simpl; intros l''.
+ rewrite elem_of_list_singleton. by intros ->.
Robbert Krebbers
committed
+ rewrite elem_of_list_bind. intros [l' [Hl'' ?]].
rewrite (interleave_Permutation _ _ _ Hl''). constructor; auto.
* induction 1; eauto using permutations_refl,
permutations_skip, permutations_swap, permutations_trans.
Qed.
End permutations.
(** ** Properties of the folding functions *)
Robbert Krebbers
committed
Definition foldr_app := @fold_right_app.
Lemma foldl_app {A B} (f : A → B → A) (l k : list B) (a : A) :
foldl f a (l ++ k) = foldl f (foldl f a l) k.
Proof. revert a. induction l; simpl; auto. Qed.
Robbert Krebbers
committed
Lemma foldr_permutation {A B} (R : relation B) `{!Equivalence R}
(f : A → B → B) (b : B) `{!Proper ((=) ==> R ==> R) f}
(Hf : ∀ a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
Proper ((≡ₚ) ==> R) (foldr f b).
Proof. induction 1; simpl; [done|by f_equiv|apply Hf|etransitivity; eauto]. Qed.
(** ** Properties of the [zip_with] and [zip] functions *)
Section zip_with.
Context {A B C : Type} (f : A → B → C).
Implicit Types x : A.
Implicit Types y : B.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma zip_with_nil_r l : zip_with f l [] = [].
Proof. by destruct l. Qed.
Lemma zip_with_app l1 l2 k1 k2 :
length l1 = length k1 →
zip_with f (l1 ++ l2) (k1 ++ k2) = zip_with f l1 k1 ++ zip_with f l2 k2.
Proof. rewrite <-Forall2_same_length. induction 1; f_equal'; auto. Qed.
Lemma zip_with_app_l l1 l2 k :
zip_with f (l1 ++ l2) k
= zip_with f l1 (take (length l1) k) ++ zip_with f l2 (drop (length l1) k).
Proof.
revert k. induction l1; intros [|??]; f_equal'; auto. by destruct l2.
Qed.
Lemma zip_with_app_r l k1 k2 :
zip_with f l (k1 ++ k2)
= zip_with f (take (length k1) l) k1 ++ zip_with f (drop (length k1) l) k2.
Proof. revert l. induction k1; intros [|??]; f_equal'; auto. Qed.
Lemma zip_with_flip l k : zip_with (flip f) k l = zip_with f l k.
Proof. revert k. induction l; intros [|??]; f_equal'; auto. Qed.
Lemma zip_with_ext (g : A → B → C) l1 l2 k1 k2 :
(∀ x y, f x y = g x y) → l1 = l2 → k1 = k2 →
zip_with f l1 k1 = zip_with g l2 k2.
Proof. intros ? <-<-. revert k1. by induction l1; intros [|??]; f_equal'. Qed.
Lemma Forall_zip_with_ext_l (g : A → B → C) l k1 k2 :
Forall (λ x, ∀ y, f x y = g x y) l → k1 = k2 →
zip_with f l k1 = zip_with g l k2.
Proof. intros Hl <-. revert k1. by induction Hl; intros [|??]; f_equal'. Qed.
Lemma Forall_zip_with_ext_r (g : A → B → C) l1 l2 k :
l1 = l2 → Forall (λ y, ∀ x, f x y = g x y) k →
zip_with f l1 k = zip_with g l2 k.
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
Proof. intros <- Hk. revert l1. by induction Hk; intros [|??]; f_equal'. Qed.
Lemma zip_with_fmap_l {D} (g : D → A) lD k :
zip_with f (g <$> lD) k = zip_with (λ z, f (g z)) lD k.
Proof. revert k. by induction lD; intros [|??]; f_equal'. Qed.
Lemma zip_with_fmap_r {D} (g : D → B) l kD :
zip_with f l (g <$> kD) = zip_with (λ x z, f x (g z)) l kD.
Proof. revert kD. by induction l; intros [|??]; f_equal'. Qed.
Lemma zip_with_nil_inv l k : zip_with f l k = [] → l = [] ∨ k = [].
Proof. destruct l, k; intros; simplify_equality'; auto. Qed.
Lemma zip_with_cons_inv l k z lC :
zip_with f l k = z :: lC →
∃ x y l' k', z = f x y ∧ lC = zip_with f l' k' ∧ l = x :: l' ∧ k = y :: k'.
Proof. intros. destruct l, k; simplify_equality'; repeat eexists. Qed.
Lemma zip_with_app_inv l k lC1 lC2 :
zip_with f l k = lC1 ++ lC2 →
∃ l1 k1 l2 k2, lC1 = zip_with f l1 k1 ∧ lC2 = zip_with f l2 k2 ∧
l = l1 ++ l2 ∧ k = k1 ++ k2 ∧ length l1 = length k1.
Proof.
revert l k. induction lC1 as [|z lC1 IH]; simpl.
{ intros l k ?. by eexists [], [], l, k. }
intros [|x l] [|y k] ?; simplify_equality'.
destruct (IH l k) as (l1&k1&l2&k2&->&->&->&->&?); [done |].
exists (x :: l1) (y :: k1) l2 k2; simpl; auto with congruence.
Qed.
Lemma zip_with_inj `{!Injective2 (=) (=) (=) f} l1 l2 k1 k2 :
length l1 = length k1 → length l2 = length k2 →
zip_with f l1 k1 = zip_with f l2 k2 → l1 = l2 ∧ k1 = k2.
Proof.
rewrite <-!Forall2_same_length. intros Hl. revert l2 k2.
induction Hl; intros ?? [] ?; f_equal; naive_solver.
Qed.
Lemma zip_with_length l k :
length (zip_with f l k) = min (length l) (length k).
Proof. revert k. induction l; intros [|??]; simpl; auto with lia. Qed.
Lemma zip_with_length_l l k :
length l ≤ length k → length (zip_with f l k) = length l.
Proof. rewrite zip_with_length; lia. Qed.
Lemma zip_with_length_r l k :
length k ≤ length l → length (zip_with f l k) = length k.
Proof. rewrite zip_with_length; lia. Qed.
Lemma zip_with_length_same_l P l k :
Forall2 P l k → length (zip_with f l k) = length l.
Proof. induction 1; simpl; auto. Qed.
Lemma zip_with_length_same_r P l k :
Forall2 P l k → length (zip_with f l k) = length k.
Proof. induction 1; simpl; auto. Qed.
Lemma lookup_zip_with l k i :
zip_with f l k !! i = x ← l !! i; y ← k !! i; Some (f x y).
Proof.
revert k i. induction l; intros [|??] [|?]; f_equal'; auto.
by destruct (_ !! _).
Qed.
Lemma fmap_zip_with_l (g : C → A) l k :
(∀ x y, g (f x y) = x) → length l ≤ length k → g <$> zip_with f l k = l.
Proof. revert k. induction l; intros [|??] ??; f_equal'; auto with lia. Qed.
Lemma fmap_zip_with_r (g : C → B) l k :
(∀ x y, g (f x y) = y) → length k ≤ length l → g <$> zip_with f l k = k.
Proof. revert l. induction k; intros [|??] ??; f_equal'; auto with lia. Qed.
Lemma zip_with_zip l k : zip_with f l k = curry f <$> zip l k.
Proof. revert k. by induction l; intros [|??]; f_equal'. Qed.
Lemma zip_with_fst_snd lk :
zip_with f (fst <$> lk) (snd <$> lk) = curry f <$> lk.
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
Proof. by induction lk as [|[]]; f_equal'. Qed.
Lemma zip_with_replicate_l n x k :
length k ≤ n → zip_with f (replicate n x) k = f x <$> k.
Proof. revert n. induction k; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma zip_with_replicate_r n y l :
length l ≤ n → zip_with f l (replicate n y) = flip f y <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma zip_with_take n l k :
take n (zip_with f l k) = zip_with f (take n l) (take n k).
Proof. revert n k. by induction l; intros [|?] [|??]; f_equal'. Qed.
Lemma zip_with_drop n l k :
drop n (zip_with f l k) = zip_with f (drop n l) (drop n k).
Proof.
revert n k. induction l; intros [] []; f_equal'; auto using zip_with_nil_r.
Qed.
Lemma zip_with_take_l n l k :
length k ≤ n → zip_with f (take n l) k = zip_with f l k.
Proof. revert n k. induction l; intros [] [] ?; f_equal'; auto with lia. Qed.
Lemma zip_with_take_r n l k :
length l ≤ n → zip_with f l (take n k) = zip_with f l k.
Proof. revert n k. induction l; intros [] [] ?; f_equal'; auto with lia. Qed.
Lemma Forall_zip_with_fst (P : A → Prop) (Q : C → Prop) l k :
Forall P l → Forall (λ y, ∀ x, P x → Q (f x y)) k →
Forall Q (zip_with f l k).
Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.
Lemma Forall_zip_with_snd (P : B → Prop) (Q : C → Prop) l k :
Forall (λ x, ∀ y, P y → Q (f x y)) l → Forall P k →
Forall Q (zip_with f l k).
Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.
Lemma zip_with_sublist_alter {A B} (f : A → B → A) g l k i n l' k' :
length l = length k →
sublist_lookup i n l = Some l' → sublist_lookup i n k = Some k' →
length (g l') = length k' → zip_with f (g l') k' = g (zip_with f l' k') →
zip_with f (sublist_alter g i n l) k = sublist_alter g i n (zip_with f l k).
Proof.
unfold sublist_lookup, sublist_alter. intros Hlen; rewrite Hlen.
intros ?? Hl' Hk'. simplify_option_equality.
by rewrite !zip_with_app_l, !zip_with_drop, Hl', drop_drop, !zip_with_take,
!take_length_le, Hk' by (rewrite ?drop_length; auto with lia).
Qed.
Section zip.
Context {A B : Type}.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma fst_zip l k : length l ≤ length k → fst <$> zip l k = l.
Proof. by apply fmap_zip_with_l. Qed.
Lemma snd_zip l k : length k ≤ length l → snd <$> zip l k = k.
Proof. by apply fmap_zip_with_r. Qed.
Lemma zip_fst_snd (lk : list (A * B)) : zip (fst <$> lk) (snd <$> lk) = lk.
Proof. by induction lk as [|[]]; f_equal'. Qed.
Lemma Forall2_fst P l1 l2 k1 k2 :
length l2 = length k2 → Forall2 P l1 k1 →
Forall2 (λ x y, P (x.1) (y.1)) (zip l1 l2) (zip k1 k2).
Proof.
rewrite <-Forall2_same_length. intros Hlk2 Hlk1. revert l2 k2 Hlk2.
induction Hlk1; intros ?? [|??????]; simpl; auto.
Qed.
Lemma Forall2_snd P l1 l2 k1 k2 :
length l1 = length k1 → Forall2 P l2 k2 →
Forall2 (λ x y, P (x.2) (y.2)) (zip l1 l2) (zip k1 k2).
Proof.
rewrite <-Forall2_same_length. intros Hlk1 Hlk2. revert l1 k1 Hlk1.
induction Hlk2; intros ?? [|??????]; simpl; auto.
Qed.
Lemma elem_of_zipped_map {A B} (f : list A → list A → A → B) l k x :
x ∈ zipped_map f l k ↔
∃ k' k'' y, k = k' ++ [y] ++ k'' ∧ x = f (reverse k' ++ l) k'' y.
Proof.
split.
* revert l. induction k as [|z k IH]; simpl; intros l; inversion_clear 1.
{ by eexists [], k, z. }
destruct (IH (z :: l)) as (k'&k''&y&->&->); [done |].
eexists (z :: k'), k'', y. by rewrite reverse_cons, <-(associative_L (++)).
* intros (k'&k''&y&->&->). revert l. induction k' as [|z k' IH]; [by left|].
intros l; right. by rewrite reverse_cons, <-!(associative_L (++)).
Qed.
Section zipped_list_ind.
Context {A} (P : list A → list A → Prop).
Robbert Krebbers
committed
Context (Pnil : ∀ l, P l []) (Pcons : ∀ l k x, P (x :: l) k → P l (x :: k)).
Fixpoint zipped_list_ind l k : P l k :=
match k with
| [] => Pnil _ | x :: k => Pcons _ _ _ (zipped_list_ind (x :: l) k)
end.
End zipped_list_ind.
Lemma zipped_Forall_app {A} (P : list A → list A → A → Prop) l k k' :
zipped_Forall P l (k ++ k') → zipped_Forall P (reverse k ++ l) k'.
Proof.
revert l. induction k as [|x k IH]; simpl; [done |].
Robbert Krebbers
committed
inversion_clear 1. rewrite reverse_cons, <-(associative_L (++)). by apply IH.
Robbert Krebbers
committed
(** * Relection over lists *)
(** We define a simple data structure [rlist] to capture a syntactic
representation of lists consisting of constants, applications and the nil list.
Note that we represent [(x ::)] as [rapp (rnode [x])]. For now, we abstract
over the type of constants, but later we use [nat]s and a list representing
a corresponding environment. *)
Inductive rlist (A : Type) :=
rnil : rlist A | rnode : A → rlist A | rapp : rlist A → rlist A → rlist A.
Robbert Krebbers
committed
Arguments rnil {_}.
Arguments rnode {_} _.
Arguments rapp {_} _ _.
Module rlist.
Fixpoint to_list {A} (t : rlist A) : list A :=
match t with
| rnil => [] | rnode l => [l] | rapp t1 t2 => to_list t1 ++ to_list t2
Robbert Krebbers
committed
end.
Notation env A := (list (list A)) (only parsing).
Definition eval {A} (E : env A) : rlist nat → list A :=
fix go t :=
match t with
| rnil => []
| rnode i => from_option [] (E !! i)
| rapp t1 t2 => go t1 ++ go t2
end.
Robbert Krebbers
committed
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
(** A simple quoting mechanism using type classes. [QuoteLookup E1 E2 x i]
means: starting in environment [E1], look up the index [i] corresponding to the
constant [x]. In case [x] has a corresponding index [i] in [E1], the original
environment is given back as [E2]. Otherwise, the environment [E2] is extended
with a binding [i] for [x]. *)
Section quote_lookup.
Context {A : Type}.
Class QuoteLookup (E1 E2 : list A) (x : A) (i : nat) := {}.
Global Instance quote_lookup_here E x : QuoteLookup (x :: E) (x :: E) x 0.
Global Instance quote_lookup_end x : QuoteLookup [] [x] x 0.
Global Instance quote_lookup_further E1 E2 x i y :
QuoteLookup E1 E2 x i → QuoteLookup (y :: E1) (y :: E2) x (S i) | 1000.
End quote_lookup.
Section quote.
Context {A : Type}.
Class Quote (E1 E2 : env A) (l : list A) (t : rlist nat) := {}.
Global Instance quote_nil: Quote E1 E1 [] rnil.
Global Instance quote_node E1 E2 l i:
QuoteLookup E1 E2 l i → Quote E1 E2 l (rnode i) | 1000.
Global Instance quote_cons E1 E2 E3 x l i t :
QuoteLookup E1 E2 [x] i →
Quote E2 E3 l t → Quote E1 E3 (x :: l) (rapp (rnode i) t).
Global Instance quote_app E1 E2 E3 l1 l2 t1 t2 :
Quote E1 E2 l1 t1 → Quote E2 E3 l2 t2 → Quote E1 E3 (l1 ++ l2) (rapp t1 t2).
End quote.
Section eval.
Context {A} (E : env A).
Lemma eval_alt t : eval E t = to_list t ≫= from_option [] ∘ (E !!).
Proof.
induction t; csimpl.
Robbert Krebbers
committed
* by rewrite (right_id_L [] (++)).
* rewrite bind_app. by f_equal.
Qed.
Lemma eval_eq t1 t2 : to_list t1 = to_list t2 → eval E t1 = eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_Permutation t1 t2 :
to_list t1 ≡ₚ to_list t2 → eval E t1 ≡ₚ eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_contains t1 t2 :
to_list t1 `contains` to_list t2 → eval E t1 `contains` eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
End eval.
End rlist.
Robbert Krebbers
committed
(** * Tactics *)
Ltac quote_Permutation :=
match goal with
| |- ?l1 ≡ₚ ?l2 =>
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
change (rlist.eval E3 t1 ≡ₚ rlist.eval E3 t2)
end end
end.
Ltac solve_Permutation :=
quote_Permutation; apply rlist.eval_Permutation;
apply (bool_decide_unpack _); by vm_compute.
Robbert Krebbers
committed
Ltac quote_contains :=
match goal with
| |- ?l1 `contains` ?l2 =>
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
change (rlist.eval E3 t1 `contains` rlist.eval E3 t2)
end end
end.
Ltac solve_contains :=
quote_contains; apply rlist.eval_contains;
apply (bool_decide_unpack _); by vm_compute.
Ltac decompose_elem_of_list := repeat
match goal with
| H : ?x ∈ [] |- _ => by destruct (not_elem_of_nil x)
| H : _ ∈ _ :: _ |- _ => apply elem_of_cons in H; destruct H
| H : _ ∈ _ ++ _ |- _ => apply elem_of_app in H; destruct H
end.
Ltac simplify_list_fmap_equality := repeat
match goal with
| _ => progress simplify_equality
| H : _ <$> _ = [] |- _ => apply fmap_nil_inv in H
| H : [] = _ <$> _ |- _ => symmetry in H; apply fmap_nil_inv in H
| H : _ <$> _ = _ :: _ |- _ =>
Robbert Krebbers
committed
apply fmap_cons_inv in H; destruct H as (?&?&?&?&?)
| H : _ :: _ = _ <$> _ |- _ => symmetry in H
| H : _ <$> _ = _ ++ _ |- _ =>
Robbert Krebbers
committed
apply fmap_app_inv in H; destruct H as (?&?&?&?&?)
| H : _ ++ _ = _ <$> _ |- _ => symmetry in H
end.
Ltac simplify_zip_equality := repeat
match goal with
| _ => progress simplify_equality
Robbert Krebbers
committed
| H : zip_with _ _ _ = [] |- _ => apply zip_with_nil_inv in H; destruct H
| H : [] = zip_with _ _ _ |- _ => symmetry in H
| H : zip_with _ _ _ = _ :: _ |- _ =>
apply zip_with_cons_inv in H; destruct H as (?&?&?&?&?&?&?&?)
| H : _ :: _ = zip_with _ _ _ |- _ => symmetry in H
| H : zip_with _ _ _ = _ ++ _ |- _ =>
apply zip_with_app_inv in H; destruct H as (?&?&?&?&?&?&?&?&?)
| H : _ ++ _ = zip_with _ _ _ |- _ => symmetry in H
end.
Ltac decompose_Forall_hyps := repeat
match goal with
| H : Forall _ [] |- _ => clear H
| H : Forall _ (_ :: _) |- _ => rewrite Forall_cons in H; destruct H
| H : Forall _ (_ ++ _) |- _ => rewrite Forall_app in H; destruct H
| H : Forall2 _ [] [] |- _ => clear H
| H : Forall2 _ (_ :: _) [] |- _ => destruct (Forall2_cons_nil_inv _ _ _ H)
| H : Forall2 _ [] (_ :: _) |- _ => destruct (Forall2_nil_cons_inv _ _ _ H)
| H : Forall2 _ [] ?k |- _ => apply Forall2_nil_inv_l in H; subst k
| H : Forall2 _ ?l [] |- _ => apply Forall2_nil_inv_r in H; subst l
| H : Forall2 _ (_ :: _) (_ :: _) |- _ =>
Robbert Krebbers
committed
apply Forall2_cons_inv in H; destruct H
| _ => progress simplify_equality'
| H : Forall2 _ (_ :: _) ?k |- _ =>
let k_hd := fresh k "_hd" in let k_tl := fresh k "_tl" in
apply Forall2_cons_inv_l in H; destruct H as (k_hd&k_tl&?&?&->);
rename k_tl into k
| H : Forall2 _ ?l (_ :: _) |- _ =>
let l_hd := fresh l "_hd" in let l_tl := fresh l "_tl" in
apply Forall2_cons_inv_r in H; destruct H as (l_hd&l_tl&?&?&->);
rename l_tl into l
| H : Forall2 _ (_ ++ _) (_ ++ _) |- _ =>
apply Forall2_app_inv in H; [destruct H | first
[by eauto using Forall2_length | by symmetry; eauto using Forall2_length]]
| H : Forall2 _ (_ ++ _) ?k |- _ => first
[ let k1 := fresh k "_1" in let k2 := fresh k "_2" in
apply Forall2_app_inv_l in H; destruct H as (k1&k2&?&?&->)
| apply Forall2_app_inv_l in H; destruct H as (?&?&?&?&?)]
| H : Forall2 _ ?l (_ ++ _) |- _ => first
[ let l1 := fresh l "_1" in let l2 := fresh l "_2" in
apply Forall2_app_inv_r in H; destruct H as (l1&l2&?&?&->)
| apply Forall2_app_inv_r in H; destruct H as (?&?&?&?&?) ]
| H : Forall ?P ?l, H1 : ?l !! _ = Some ?x |- _ =>
(* to avoid some stupid loops, not fool proof *)
unless (P x) by auto using Forall_app_2, Forall_nil_2;
Robbert Krebbers
committed
assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
| H : Forall2 ?P ?l ?k |- _ =>
| H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _ =>
unless (P x y) by done; let E := fresh in
assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
Robbert Krebbers
committed
lazy beta in E
| H1 : l !! _ = Some ?x |- _ =>
destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
| H2 : k !! _ = Some ?y |- _ =>
destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
end
| H : Forall3 ?P ?l ?l' ?k |- _ =>
lazymatch goal with
| H1:l !! ?i = Some ?x, H2:l' !! ?i = Some ?y, H3:k !! ?i = Some ?z |- _ =>
unless (P x y z) by done; let E := fresh in
assert (P x y z) as E by (by apply (Forall3_lookup_lmr P l l' k i x y z));
lazy beta in E
| H1 : l !! _ = Some ?x |- _ =>
destruct (Forall3_lookup_l P _ _ _ _ _ H H1) as (?&?&?&?&?)
| H2 : l' !! _ = Some ?y |- _ =>
destruct (Forall3_lookup_m P _ _ _ _ _ H H2) as (?&?&?&?&?)
| H3 : k !! _ = Some ?z |- _ =>
destruct (Forall3_lookup_r P _ _ _ _ _ H H3) as (?&?&?&?&?)
end
end.
Ltac decompose_Forall := repeat
match goal with
| |- Forall _ _ => by apply Forall_true
| |- Forall _ [] => constructor
| |- Forall _ (_ :: _) => constructor
| |- Forall _ (_ ++ _) => apply Forall_app_2
| |- Forall _ (_ <$> _) => apply Forall_fmap
| |- Forall _ (_ ≫= _) => apply Forall_bind
| |- Forall2 _ _ _ => apply Forall2_Forall
| |- Forall2 _ [] [] => constructor
| |- Forall2 _ (_ :: _) (_ :: _) => constructor
| |- Forall2 _ (_ ++ _) (_ ++ _) => first
[ apply Forall2_app; [by decompose_Forall |]
| apply Forall2_app; [| by decompose_Forall]]
| |- Forall2 _ (_ <$> _) _ => apply Forall2_fmap_l
| |- Forall2 _ _ (_ <$> _) => apply Forall2_fmap_r
| _ => progress decompose_Forall_hyps
| H : Forall _ (_ <$> _) |- _ => rewrite Forall_fmap in H
| H : Forall _ (_ ≫= _) |- _ => rewrite Forall_bind in H
Robbert Krebbers
committed
apply Forall_lookup_2; intros ???; progress decompose_Forall_hyps
apply Forall2_lookup_2; [by eauto using Forall2_length|];
intros ?????; progress decompose_Forall_hyps
end.
(** The [simplify_suffix_of] tactic removes [suffix_of] hypotheses that are
tautologies, and simplifies [suffix_of] hypotheses involving [(::)] and
[(++)]. *)
Ltac simplify_suffix_of := repeat
match goal with
Robbert Krebbers
committed
| H : suffix_of (_ :: _) _ |- _ => destruct (suffix_of_cons_not _ _ H)
| H : suffix_of (_ :: _) [] |- _ => apply suffix_of_nil_inv in H
| H : suffix_of (_ ++ _) (_ ++ _) |- _ => apply suffix_of_app_inv in H
| H : suffix_of (_ :: _) (_ :: _) |- _ =>
destruct (suffix_of_cons_inv _ _ _ _ H); clear H
| H : suffix_of ?x ?x |- _ => clear H
| H : suffix_of ?x (_ :: ?x) |- _ => clear H
| H : suffix_of ?x (_ ++ ?x) |- _ => clear H
| _ => progress simplify_equality
end.
(** The [solve_suffix_of] tactic tries to solve goals involving [suffix_of]. It
uses [simplify_suffix_of] to simplify hypotheses and tries to solve [suffix_of]
conclusions. This tactic either fails or proves the goal. *)
Robbert Krebbers
committed
Ltac solve_suffix_of := by intuition (repeat
match goal with
| _ => done
| _ => progress simplify_suffix_of
| |- suffix_of [] _ => apply suffix_of_nil
| |- suffix_of _ _ => reflexivity
| |- suffix_of _ (_ :: _) => apply suffix_of_cons_r
| |- suffix_of _ (_ ++ _) => apply suffix_of_app_r
| H : suffix_of _ _ → False |- _ => destruct H
Robbert Krebbers
committed
end).
Hint Extern 0 (PropHolds (suffix_of _ _)) =>
unfold PropHolds; solve_suffix_of : typeclass_instances.