Newer
Older
From iris.program_logic Require Export weakestpre total_weakestpre.
From iris.heap_lang Require Import lang adequacy proofmode notation.
(* Import lang *again*. This used to break notation. *)
From iris.heap_lang Require Import lang.
Set Default Proof Using "Type".
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val → iProp Σ.
Definition simpl_test :
⌜(10 = 4 + 6)%nat⌝ -∗
WP let: "x" := ref #1 in "x" <- !"x";; !"x" {{ v, ⌜v = #1⌝ }}.
Proof.
iIntros "?". wp_alloc l. repeat (wp_pure _) || wp_load || wp_store.
match goal with
| |- context [ (10 = 4 + 6)%nat ] => done
end.
Qed.

Ralf Jung
committed
Definition val_scope_test_1 := SOMEV (#(), #()).
let: "x" := ref #1 in "x" <- !"x" + #1 ;; !"x".
Lemma heap_e_spec E : WP heap_e @ E {{ v, ⌜v = #2⌝ }}%I.
iIntros "". rewrite /heap_e. Show.
wp_alloc l as "?". wp_let. wp_load. Show.
wp_op. wp_store. by wp_load.
Definition heap_e2 : expr :=
let: "x" := ref #1 in
let: "y" := ref #1 in
"x" <- !"x" + #1 ;; !"x".
Lemma heap_e2_spec E : WP heap_e2 @ E [{ v, ⌜v = #2⌝ }]%I.
iIntros "". rewrite /heap_e2.
wp_alloc l as "Hl". Show. wp_let. wp_alloc l'. wp_let.
wp_load. wp_op. wp_store. wp_load. done.
Definition heap_e3 : expr :=
let: "x" := #true in
let: "f" := λ: "z", "z" + #1 in
if: "x" then "f" #0 else "f" #1.
Lemma heap_e3_spec E : WP heap_e3 @ E [{ v, ⌜v = #1⌝ }]%I.
Proof.
iIntros "". rewrite /heap_e3.
by repeat (wp_pure _).
Qed.
Definition heap_e4 : expr :=
let: "x" := (let: "y" := ref (ref #1) in ref "y") in
! ! !"x".
Lemma heap_e4_spec : WP heap_e4 [{ v, ⌜ v = #1 ⌝ }]%I.
Proof.
rewrite /heap_e4. wp_alloc l. wp_alloc l'. wp_let.
wp_alloc l''. wp_let. by repeat wp_load.
Qed.
Definition heap_e5 : expr :=
let: "x" := ref (ref #1) in FAA (!"x") (#10 + #1) + ! !"x".
Lemma heap_e5_spec E : WP heap_e5 @ E [{ v, ⌜v = #13⌝ }]%I.
Proof.
rewrite /heap_e5. wp_alloc l. wp_alloc l'. wp_let.
wp_load. wp_op. wp_faa. do 2 wp_load. wp_op. done.
Qed.
Definition heap_e6 : val := λ: "v", "v" = "v".
Lemma heap_e6_spec (v : val) : (WP heap_e6 v {{ w, ⌜ w = #true ⌝ }})%I.
Proof. wp_lam. wp_op. by case_bool_decide. Qed.
let: "yp" := "y" + #1 in
if: "yp" < "x" then "pred" "x" "yp" else "y".
if: "x" ≤ #0 then -FindPred (-"x" + #2) #0 else FindPred "x" #0.
Lemma FindPred_spec n1 n2 E Φ :
Φ #(n2 - 1) -∗ WP FindPred #n2 #n1 @ E [{ Φ }].
iIntros (Hn) "HΦ".
iInduction (Z.gt_wf n2 n1) as [n1' _] "IH" forall (Hn).
wp_rec. wp_let. wp_op. wp_let.
wp_op; case_bool_decide; wp_if.
- iApply ("IH" with "[%] [%] HΦ"); omega.
- by assert (n1' = n2 - 1) as -> by omega.
Lemma Pred_spec n E Φ : Φ #(n - 1) -∗ WP Pred #n @ E [{ Φ }].
iIntros "HΦ". wp_lam.
wp_op. case_bool_decide; wp_if.
wp_op. by replace (n - 1) with (- (-n + 2 - 1)) by omega.
WP let: "x" := Pred #42 in Pred "x" @ E [{ v, ⌜v = #40⌝ }]%I.
Proof. iIntros "". wp_apply Pred_spec. wp_let. by wp_apply Pred_spec. Qed.
Lemma wp_apply_evar e P :
P -∗ (∀ Q Φ, Q -∗ WP e {{ Φ }}) -∗ WP e {{ _, True }}.
Proof. iIntros "HP HW". wp_apply "HW". iExact "HP". Qed.

Ralf Jung
committed
Lemma wp_cas l v :
val_is_unboxed v →
l ↦ v -∗ WP CAS #l v v {{ _, True }}.
Proof.
iIntros (?) "?". wp_cas as ? | ?. done. done.
Qed.
Lemma wp_alloc_split :
WP Alloc #0 {{ _, True }}%I.
Proof. wp_alloc l as "[Hl1 Hl2]". Show. done. Qed.
Lemma wp_alloc_drop :
WP Alloc #0 {{ _, True }}%I.
Proof. wp_alloc l as "_". Show. done. Qed.
End tests.
Section printing_tests.
Context `{heapG Σ}.
(* These terms aren't even closed, but that's not what this is about. The
length of the variable names etc. has been carefully chosen to trigger
particular behavior of the Coq pretty printer. *)
Lemma wp_print_long_expr (fun1 fun2 fun3 : expr) :
True -∗ WP let: "val1" := fun1 #() in
let: "val2" := fun2 "val1" in
let: "val3" := fun3 "val2" in
if: "val1" = "val2" then "val" else "val3" {{ _, True }}.
Proof.
iIntros "_". Show.
Abort.
Lemma wp_print_long_expr (fun1 fun2 fun3 : expr) Φ :
True -∗ WP let: "val1" := fun1 #() in
let: "val2" := fun2 "val1" in
let: "v" := fun3 "v" in
if: "v" = "v" then "v" else "v" {{ Φ }}.
Proof.
iIntros "_". Show.
Abort.
Lemma wp_print_long_expr (fun1 fun2 fun3 : expr) Φ E :
True -∗ WP let: "val1" := fun1 #() in
let: "val2" := fun2 "val1" in
let: "v" := fun3 "v" in
if: "v" = "v" then "v" else "v" @ E {{ Φ }}.
Proof.
iIntros "_". Show.
Abort.
Lemma texan_triple_long_expr (fun1 fun2 fun3 : expr) :
{{{ True }}}
let: "val1" := fun1 #() in
let: "val2" := fun2 "val1" in
let: "val3" := fun3 "val2" in
if: "val1" = "val2" then "val" else "val3"
{{{ (x y : val) (z : Z), RET (x, y, #z); True }}}.
Proof. Show. Abort.

Ralf Jung
committed
Section error_tests.
Context `{heapG Σ}.
Check "not_cas".
Lemma not_cas :
(WP #() {{ _, True }})%I.
Proof.
Fail wp_cas_suc.
Abort.

Ralf Jung
committed
End error_tests.
Lemma heap_e_adequate σ : adequate NotStuck heap_e σ (= #2).
Proof. eapply (heap_adequacy heapΣ)=> ?. by apply heap_e_spec. Qed.