Newer
Older
From iris.base_logic.lib Require Import gen_inv_heap.
From iris.program_logic Require Export weakestpre total_weakestpre.
From iris.heap_lang Require Import lang adequacy proofmode notation.
(* Import lang *again*. This used to break notation. *)
From iris.heap_lang Require Import lang.
Set Default Proof Using "Type".
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val → iProp Σ.
Definition simpl_test :
⌜(10 = 4 + 6)%nat⌝ -∗
WP let: "x" := ref #1 in "x" <- !"x";; !"x" {{ v, ⌜v = #1⌝ }}.
Proof.
iIntros "?". wp_alloc l. repeat (wp_pure _) || wp_load || wp_store.
match goal with
| |- context [ (10 = 4 + 6)%nat ] => done
end.
Qed.

Ralf Jung
committed
Definition val_scope_test_1 := SOMEV (#(), #()).
let: "x" := ref #1 in "x" <- !"x" + #1 ;; !"x".
iIntros "". rewrite /heap_e. Show.
wp_alloc l as "?". wp_load. Show.
wp_store. by wp_load.
Definition heap_e2 : expr :=
let: "x" := ref #1 in
let: "y" := ref #1 in
"x" <- !"x" + #1 ;; !"x".
Lemma heap_e2_spec E : ⊢ WP heap_e2 @ E [{ v, ⌜v = #2⌝ }].
iIntros "". rewrite /heap_e2.
wp_alloc l as "Hl". Show. wp_alloc l'.
wp_load. wp_store. wp_load. done.
Definition heap_e3 : expr :=
let: "x" := #true in
let: "f" := λ: "z", "z" + #1 in
if: "x" then "f" #0 else "f" #1.
Lemma heap_e3_spec E : ⊢ WP heap_e3 @ E [{ v, ⌜v = #1⌝ }].
Proof.
iIntros "". rewrite /heap_e3.
by repeat (wp_pure _).
Qed.
Definition heap_e4 : expr :=
let: "x" := (let: "y" := ref (ref #1) in ref "y") in
! ! !"x".
rewrite /heap_e4. wp_alloc l. wp_alloc l'.
wp_alloc l''. by repeat wp_load.
let: "x" := ref (ref #1) in ! ! "x" + FAA (!"x") (#10 + #1).
Lemma heap_e5_spec E : ⊢ WP heap_e5 @ E [{ v, ⌜v = #13⌝ }].
rewrite /heap_e5. wp_alloc l. wp_alloc l'.
wp_load. wp_faa. do 2 wp_load. by wp_pures.
Lemma heap_e6_spec (v : val) :
val_is_unboxed v → ⊢ WP heap_e6 v {{ w, ⌜ w = #true ⌝ }}.
Proof. intros ?. wp_lam. wp_op. by case_bool_decide. Qed.
Definition heap_e7 : val := λ: "v", CmpXchg "v" #0 #1.
Lemma heap_e7_spec_total l : l ↦ #0 -∗ WP heap_e7 #l [{_, l ↦ #1 }].
Proof. iIntros. wp_lam. wp_cmpxchg_suc. auto. Qed.
Check "heap_e7_spec".
Lemma heap_e7_spec l : ▷^2 l ↦ #0 -∗ WP heap_e7 #l {{_, l ↦ #1 }}.
Proof. iIntros. wp_lam. Show. wp_cmpxchg_suc. Show. auto. Qed.
let: "yp" := "y" + #1 in
if: "yp" < "x" then "pred" "x" "yp" else "y".
if: "x" ≤ #0 then -FindPred (-"x" + #2) #0 else FindPred "x" #0.
Lemma FindPred_spec n1 n2 E Φ :
Φ #(n2 - 1) -∗ WP FindPred #n2 #n1 @ E [{ Φ }].
iIntros (Hn) "HΦ".
iInduction (Z.gt_wf n2 n1) as [n1' _] "IH" forall (Hn).
- iApply ("IH" with "[%] [%] HΦ"); omega.
- by assert (n1' = n2 - 1) as -> by omega.
Lemma Pred_spec n E Φ : Φ #(n - 1) -∗ WP Pred #n @ E [{ Φ }].
iIntros "HΦ". wp_lam.
wp_op. case_bool_decide.
- wp_apply FindPred_spec; first omega. wp_pures.
by replace (n - 1) with (- (-n + 2 - 1)) by omega.
⊢ WP let: "x" := Pred #42 in Pred "x" @ E [{ v, ⌜v = #40⌝ }].
Proof. iIntros "". wp_apply Pred_spec. by wp_apply Pred_spec. Qed.
Lemma wp_apply_evar e P :
P -∗ (∀ Q Φ, Q -∗ WP e {{ Φ }}) -∗ WP e {{ _, True }}.
Proof. iIntros "HP HW". wp_apply "HW". iExact "HP". Qed.

Ralf Jung
committed
val_is_unboxed v →

Ralf Jung
committed
Proof.
iIntros (?) "?". wp_cmpxchg as ? | ?. done. done.

Ralf Jung
committed
Qed.
Proof. wp_alloc l as "[Hl1 Hl2]". Show. done. Qed.
Lemma wp_alloc_drop :
Lemma wp_nonclosed_value :
⊢ WP let: "x" := #() in (λ: "y", "x")%V #() {{ _, True }}.
Proof. wp_let. wp_lam. Fail wp_pure _. Show. Abort.
⊢ {{{ True }}}
AllocN #n #0
{{{ l, RET #l; l ↦∗ replicate (Z.to_nat n) #0}}}.
wp_alloc l as "?"; first done.
by iApply "HΦ".
Qed.
⊢ [[{ True }]]
AllocN #n #0
[[{ l, RET #l; l ↦∗ replicate (Z.to_nat n) #0}]].
Proof.
iIntros (? Φ) "!> _ HΦ".
wp_alloc l as "?"; first done. Show.
by iApply "HΦ".
Qed.
Lemma wp_load_array l :
{{{ l ↦∗ [ #0;#1;#2 ] }}} !(#l +ₗ #1) {{{ RET #1; True }}}.
Proof.
iIntros (Φ) "Hl HΦ". wp_op.
wp_apply (wp_load_offset _ _ _ _ 1 with "Hl"); first done.
Check "test_array_fraction_destruct".
Lemma test_array_fraction_destruct l vs :
l ↦∗ vs -∗ l ↦∗{1/2} vs ∗ l ↦∗{1/2} vs.
Proof.
iIntros "[Hl1 Hl2]". Show.
by iFrame.
Qed.
Lemma test_array_fraction_combine l vs :
l ↦∗{1/2} vs -∗ l↦∗{1/2} vs -∗ l ↦∗ vs.
Proof.
iIntros "Hl1 Hl2".
iSplitL "Hl1"; by iFrame.
Qed.
Lemma test_array_app l vs1 vs2 :
l ↦∗ (vs1 ++ vs2) -∗ l ↦∗ (vs1 ++ vs2).
Proof.
iIntros "H". iDestruct (array_app with "H") as "[H1 H2]".
iApply array_app. iSplitL "H1"; done.
Lemma test_array_app_split l vs1 vs2 :
l ↦∗ (vs1 ++ vs2) -∗ l ↦∗{1/2} (vs1 ++ vs2).
Proof.
iIntros "[$ _]". (* splits the fraction, not the app *)
Qed.
Section notation_tests.
Context `{!heapG Σ, inv_heapG loc val Σ}.
(* Make sure these parse and type-check. *)
Lemma inv_mapsto_own_test (l : loc) : ⊢ l ↦@ #5 □ (λ _, True). Abort.
Lemma inv_mapsto_test (l : loc) : ⊢ l ↦□ (λ _, True). Abort.
End notation_tests.
Context `{!heapG Σ}.
Lemma ref_print :
True -∗ WP let: "f" := (λ: "x", "x") in ref ("f" #10) {{ _, True }}.
Proof.
iIntros "_". Show.
Abort.
(* These terms aren't even closed, but that's not what this is about. The
length of the variable names etc. has been carefully chosen to trigger
particular behavior of the Coq pretty printer. *)
Lemma wp_print_long_expr (fun1 fun2 fun3 : expr) :
True -∗ WP let: "val1" := fun1 #() in
let: "val2" := fun2 "val1" in
let: "val3" := fun3 "val2" in
if: "val1" = "val2" then "val" else "val3" {{ _, True }}.
Proof.
iIntros "_". Show.
Abort.
Lemma wp_print_long_expr (fun1 fun2 fun3 : expr) Φ :
True -∗ WP let: "val1" := fun1 #() in
let: "val2" := fun2 "val1" in
let: "v" := fun3 "v" in
if: "v" = "v" then "v" else "v" {{ Φ }}.
Proof.
iIntros "_". Show.
Abort.
Lemma wp_print_long_expr (fun1 fun2 fun3 : expr) Φ E :
True -∗ WP let: "val1" := fun1 #() in
let: "val2" := fun2 "val1" in
let: "v" := fun3 "v" in
if: "v" = "v" then "v" else "v" @ E {{ Φ }}.
Proof.
iIntros "_". Show.
Abort.
Lemma texan_triple_long_expr (fun1 fun2 fun3 : expr) :
{{{ True }}}
let: "val1" := fun1 #() in
let: "val2" := fun2 "val1" in
let: "val3" := fun3 "val2" in
if: "val1" = "val2" then "val" else "val3"
{{{ (x y : val) (z : Z), RET (x, y, #z); True }}}.
Proof. Show. Abort.

Ralf Jung
committed
Section error_tests.
Context `{!heapG Σ}.

Ralf Jung
committed
Check "not_cmpxchg".
Lemma not_cmpxchg :

Ralf Jung
committed
End error_tests.
Lemma heap_e_adequate σ : adequate NotStuck heap_e σ (λ v _, v = #2).
Proof. eapply (heap_adequacy heapΣ)=> ?. by apply heap_e_spec. Qed.